Assessing the Effect of Building Skin Adaptability on Energy Consumption in Hot Arid Regions

Q4 Multidisciplinary Scientific Journal of King Faisal University Pub Date : 2022-01-01 DOI:10.37575/b/sci/210082
S. Khelil, Alla Eddine Khelil, T. Bouzir, D. Berkouk, N. Zemmouri
{"title":"Assessing the Effect of Building Skin Adaptability on Energy Consumption in Hot Arid Regions","authors":"S. Khelil, Alla Eddine Khelil, T. Bouzir, D. Berkouk, N. Zemmouri","doi":"10.37575/b/sci/210082","DOIUrl":null,"url":null,"abstract":"Building skins have a vital role in energy efficiency, particularly in terms of the conservation or consumption of energy. Many factors must be considered by designers to prevent wasting significant quantities of energy, to preserve and provide internal air conditioning and lighting, particularly in hot dry locations where the integration of sun protection systems is highly recommended. This pilot study looks at the challenge of developing energy-efficient building skins in hot regions like Biskra city by applying a natural daylight strategy represented by a parameterised moveable shading component to the skin of a hospital patient’s room. In this research, we aim to assess the adoption of building skin parameterisation as a beneficial technique for reducing energy consumption and improving internal temperature and lighting in this environment by developing and implementing a computational design methodology. Promising experimental results demonstrate the benefit of this proposal. The use of parameterisation in the design of patient’s room skins, with moveable, tightly folded morphology, providing self-shading, are essential and effective techniques for ensuring good natural lighting and reducing both temperature and energy consumption..","PeriodicalId":39024,"journal":{"name":"Scientific Journal of King Faisal University","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of King Faisal University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37575/b/sci/210082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Building skins have a vital role in energy efficiency, particularly in terms of the conservation or consumption of energy. Many factors must be considered by designers to prevent wasting significant quantities of energy, to preserve and provide internal air conditioning and lighting, particularly in hot dry locations where the integration of sun protection systems is highly recommended. This pilot study looks at the challenge of developing energy-efficient building skins in hot regions like Biskra city by applying a natural daylight strategy represented by a parameterised moveable shading component to the skin of a hospital patient’s room. In this research, we aim to assess the adoption of building skin parameterisation as a beneficial technique for reducing energy consumption and improving internal temperature and lighting in this environment by developing and implementing a computational design methodology. Promising experimental results demonstrate the benefit of this proposal. The use of parameterisation in the design of patient’s room skins, with moveable, tightly folded morphology, providing self-shading, are essential and effective techniques for ensuring good natural lighting and reducing both temperature and energy consumption..
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
炎热干旱区建筑表皮适应性对能耗影响的评价
建筑表皮在能源效率方面起着至关重要的作用,特别是在节约或消耗能源方面。设计师必须考虑许多因素,以防止浪费大量的能源,保存和提供内部空调和照明,特别是在炎热干燥的地方,强烈建议集成防晒系统。这项试点研究着眼于在比斯克拉市等炎热地区开发节能建筑表皮的挑战,通过将参数化可移动遮阳组件代表的自然采光策略应用于医院病房的表皮。在这项研究中,我们的目标是通过开发和实施计算设计方法来评估建筑表皮参数化作为一种有益的技术的采用,以减少能源消耗,改善这种环境中的内部温度和照明。实验结果表明了该方法的有效性。在病人房间皮肤的设计中使用参数化,具有可移动的,紧密折叠的形态,提供自遮阳,是确保良好的自然采光和降低温度和能源消耗的必要和有效的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Journal of King Faisal University
Scientific Journal of King Faisal University Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
0
期刊介绍: The scientific Journal of King Faisal University is a biannual refereed scientific journal issued under the guidance of the University Scientific Council. The journal also publishes special and supplementary issues when needed. The first volume was published on 1420H-2000G. The journal publishes two separate issues: Humanities and Management Sciences issue, classified in the Arab Impact Factor index, and Basic and Applied Sciences issue, on June and December, and indexed in (C​ABI) and (SCOPUS) international databases.
期刊最新文献
Evaluation of the Mangrove Ecosystem in Saudi Arabia The Role of Nanosilica in Ameliorating the Deleterious Effect of Salinity Shock on Cucumber Growth Physical and Chemical Treatment Effects on the Germination of Pear Seeds (Pyrus Communis L.) The Determination of Heterosis and Combining Ability for Qualitative Characteristics in Tobacco Using Half-Diallel Cross A Framework for Building a Housing Support System for Orphans: Saudi Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1