Revealing of Potential Plant Growth-Enhancing Traits Through In Silico Genomic Analysis of Bacillus Rhizoplanae CIP111899

Q4 Multidisciplinary Scientific Journal of King Faisal University Pub Date : 2023-01-01 DOI:10.37575/b/sci/230003
Guendouz Dif, A. Zitouni
{"title":"Revealing of Potential Plant Growth-Enhancing Traits Through In Silico Genomic Analysis of Bacillus Rhizoplanae CIP111899","authors":"Guendouz Dif, A. Zitouni","doi":"10.37575/b/sci/230003","DOIUrl":null,"url":null,"abstract":"The objective of this study was to examine the whole genome of the bacterial strain CIP111899, isolated from the root surface of maize (Zea mays), in order to reveal the presence of genes implicated in enhancing plant growth. The genome-based taxonomy revealed that strain CIP111899 belongs to a new species called Bacillus rhizoplanae. In the second step, the genome of CIP111899 was analyzed on multiple levels using various information tools. This involved examining functional categories associated with genes using analytical techniques, namely, annotation using the RAST server, then identifying growth-promoting genes with the Prokka program, and finally detecting groups of genes responsible for secondary metabolism through antiSMASH analysis. The results of the genomic analysis of strain CIP111899 showed the presence of multiple genes that enhance stress tolerance, such as those encoding enzymes and antioxidants (superoxide dismutase, peroxidases, and catalase). Additionally, various plant growth-promoting genes were identified, including those involved in the solubility of inorganic phosphorus, phytohormone production, and iron uptake. In conclusion, strain CIP111899 has shown promise as a potential agent for promoting plant growth and thereby improving food security due to its genetic composition.","PeriodicalId":39024,"journal":{"name":"Scientific Journal of King Faisal University","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of King Faisal University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37575/b/sci/230003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study was to examine the whole genome of the bacterial strain CIP111899, isolated from the root surface of maize (Zea mays), in order to reveal the presence of genes implicated in enhancing plant growth. The genome-based taxonomy revealed that strain CIP111899 belongs to a new species called Bacillus rhizoplanae. In the second step, the genome of CIP111899 was analyzed on multiple levels using various information tools. This involved examining functional categories associated with genes using analytical techniques, namely, annotation using the RAST server, then identifying growth-promoting genes with the Prokka program, and finally detecting groups of genes responsible for secondary metabolism through antiSMASH analysis. The results of the genomic analysis of strain CIP111899 showed the presence of multiple genes that enhance stress tolerance, such as those encoding enzymes and antioxidants (superoxide dismutase, peroxidases, and catalase). Additionally, various plant growth-promoting genes were identified, including those involved in the solubility of inorganic phosphorus, phytohormone production, and iron uptake. In conclusion, strain CIP111899 has shown promise as a potential agent for promoting plant growth and thereby improving food security due to its genetic composition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对根状芽孢杆菌CIP111899的计算机基因组分析揭示潜在的植物促生长性状
本研究的目的是检测从玉米根表面分离的菌株CIP111899的全基因组,以揭示与促进植物生长有关的基因的存在。基于基因组的分类显示,菌株CIP111899属于一个名为根状芽孢杆菌的新种。第二步,利用多种信息工具对CIP111899基因组进行多层次分析。这包括使用分析技术检查与基因相关的功能类别,即使用RAST服务器进行注释,然后使用Prokka程序识别生长促进基因,最后通过反smash分析检测负责次级代谢的基因组。对菌株CIP111899的基因组分析结果表明,菌株CIP111899存在多个增强抗逆性的基因,如编码酶和抗氧化剂(超氧化物歧化酶、过氧化物酶和过氧化氢酶)的基因。此外,还鉴定了多种植物生长促进基因,包括与无机磷的溶解度、植物激素产生和铁吸收有关的基因。综上所述,由于CIP111899菌株的遗传组成,它有望成为促进植物生长从而改善粮食安全的潜在药剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Journal of King Faisal University
Scientific Journal of King Faisal University Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
0
期刊介绍: The scientific Journal of King Faisal University is a biannual refereed scientific journal issued under the guidance of the University Scientific Council. The journal also publishes special and supplementary issues when needed. The first volume was published on 1420H-2000G. The journal publishes two separate issues: Humanities and Management Sciences issue, classified in the Arab Impact Factor index, and Basic and Applied Sciences issue, on June and December, and indexed in (C​ABI) and (SCOPUS) international databases.
期刊最新文献
Evaluation of the Mangrove Ecosystem in Saudi Arabia The Role of Nanosilica in Ameliorating the Deleterious Effect of Salinity Shock on Cucumber Growth Physical and Chemical Treatment Effects on the Germination of Pear Seeds (Pyrus Communis L.) The Determination of Heterosis and Combining Ability for Qualitative Characteristics in Tobacco Using Half-Diallel Cross A Framework for Building a Housing Support System for Orphans: Saudi Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1