Ravindra
A. De Silva, Dhiraj Kumar, Ala Lisok, Samit Chatterjee, Bryan Wharram, Kalagadda Venkateswara Rao, Ronnie Mease, Robert F. Dannals, Martin G. Pomper, Sridhar Nimmagadda*
{"title":"Peptide-Based 68Ga-PET Radiotracer for Imaging PD-L1 Expression in Cancer","authors":"Ravindra\r\nA. De Silva, Dhiraj Kumar, Ala Lisok, Samit Chatterjee, Bryan Wharram, Kalagadda Venkateswara Rao, Ronnie Mease, Robert F. Dannals, Martin G. Pomper, Sridhar Nimmagadda*","doi":"10.1021/acs.molpharmaceut.8b00399","DOIUrl":null,"url":null,"abstract":"<p >Tumors create and maintain an immunosuppressive microenvironment that promotes cancer cell escape from immune surveillance. The immune checkpoint protein programmed death-ligand 1 (PD-L1) is expressed in many cancers and is an important contributor to the maintenance of the immunosuppressive tumor microenvironment. PD-L1 is a prominent target for cancer immunotherapy. Guidance of anti-PD-L1 therapy is currently effected through measurement of PD-L1 through biopsy and immunohistochemistry. Here, we report a peptide-based imaging agent, [<sup>68</sup>Ga]WL12, to detect PD-L1 expression in tumors noninvasively by positron emission tomography (PET). WL12, a cyclic peptide comprising 14 amino acids, binds to PD-L1 with high affinity (IC50≈ 23 nM). Synthesis of [<sup>68</sup>Ga]WL12 provided radiochemical purity >99% after purification. Biodistribution in immunocompetent mice demonstrated 11.56 ± 3.18, 4.97 ± 0.8, 1.9 ± 0.1, and 1.33 ± 0.21 percentage of injected dose per gram (%ID/g) in hPD-L1, MDAMB231, SUM149, and CHO tumors, respectively, at 1 h postinjection, with high binding specificity noted with coinjection of excess, nonradiolabeled WL12. PET imaging demonstrated high tissue contrast in all tumor models tested.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"15 9","pages":"3946–3952"},"PeriodicalIF":4.5000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.molpharmaceut.8b00399","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b00399","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 81
Abstract
Tumors create and maintain an immunosuppressive microenvironment that promotes cancer cell escape from immune surveillance. The immune checkpoint protein programmed death-ligand 1 (PD-L1) is expressed in many cancers and is an important contributor to the maintenance of the immunosuppressive tumor microenvironment. PD-L1 is a prominent target for cancer immunotherapy. Guidance of anti-PD-L1 therapy is currently effected through measurement of PD-L1 through biopsy and immunohistochemistry. Here, we report a peptide-based imaging agent, [68Ga]WL12, to detect PD-L1 expression in tumors noninvasively by positron emission tomography (PET). WL12, a cyclic peptide comprising 14 amino acids, binds to PD-L1 with high affinity (IC50≈ 23 nM). Synthesis of [68Ga]WL12 provided radiochemical purity >99% after purification. Biodistribution in immunocompetent mice demonstrated 11.56 ± 3.18, 4.97 ± 0.8, 1.9 ± 0.1, and 1.33 ± 0.21 percentage of injected dose per gram (%ID/g) in hPD-L1, MDAMB231, SUM149, and CHO tumors, respectively, at 1 h postinjection, with high binding specificity noted with coinjection of excess, nonradiolabeled WL12. PET imaging demonstrated high tissue contrast in all tumor models tested.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.