{"title":"MiR-302: The Multifunctional MicroRNA","authors":"S. Ying","doi":"10.31579/2640-1045/040","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are short single-stranded noncoding RNAs (20- to 25-nucleotide (nt) long) representing a class of small regulatory RNAs. By inhibiting the translation of target mRNAs, miRNAs regulate gene expression posttranscriptionally and thus play an important role in a wide range of cellular processes. Currently, there are two known types of miRNAs: intergenic and intronic miRNAs. Biogenesis of an intergenic miRNA starts with the synthesis of a primary miRNA transcript (pri-miRNA) catalyzed by types-II or -III RNA polymerase (Pol-II/III). Pri-miRNAs are processed in the nucleus by the ribonuclease Drosha into a miRNA precursor (pre-miRNA) approximately 60-nt in length. After being transported into the cytoplasm, these pre-miRNAs are further processed into mature and functional miRNAs by the cytoplasmic ribonuclease Dicer. Mature miRNAs then associate with a number of proteins to form the RNA-induced silencing complex (RISC) that bind with target mRNAs having total or partial complementary sequences to the miRNAs and initiate the inhibition of subsequent protein translation via RNA interference (RNAi).","PeriodicalId":72909,"journal":{"name":"Endocrinology and disorders : open access","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology and disorders : open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31579/2640-1045/040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs (miRNAs) are short single-stranded noncoding RNAs (20- to 25-nucleotide (nt) long) representing a class of small regulatory RNAs. By inhibiting the translation of target mRNAs, miRNAs regulate gene expression posttranscriptionally and thus play an important role in a wide range of cellular processes. Currently, there are two known types of miRNAs: intergenic and intronic miRNAs. Biogenesis of an intergenic miRNA starts with the synthesis of a primary miRNA transcript (pri-miRNA) catalyzed by types-II or -III RNA polymerase (Pol-II/III). Pri-miRNAs are processed in the nucleus by the ribonuclease Drosha into a miRNA precursor (pre-miRNA) approximately 60-nt in length. After being transported into the cytoplasm, these pre-miRNAs are further processed into mature and functional miRNAs by the cytoplasmic ribonuclease Dicer. Mature miRNAs then associate with a number of proteins to form the RNA-induced silencing complex (RISC) that bind with target mRNAs having total or partial complementary sequences to the miRNAs and initiate the inhibition of subsequent protein translation via RNA interference (RNAi).