Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic

IF 0.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Dynamics and Games Pub Date : 2021-01-01 DOI:10.3934/JDG.2021004
J. Leventides, C. Poulios, Georgios Alkis Tsiatsios, M. Livada, Stavros Tsipras, Konstantinos Lefcaditis, P. Sargenti, A. Sargenti
{"title":"Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic","authors":"J. Leventides, C. Poulios, Georgios Alkis Tsiatsios, M. Livada, Stavros Tsipras, Konstantinos Lefcaditis, P. Sargenti, A. Sargenti","doi":"10.3934/JDG.2021004","DOIUrl":null,"url":null,"abstract":"We utilize systems theory in the study of the implementation of non pharmaceutical strategies for the mitigation of the COVID-19 pandemic. We present two models. The first one is a model of predictive control with receding horizon and discontinuous actions of unknown costs for the implementation of adaptive triggering policies during the disease. This model is based on a periodic assessment of the peak of the pandemic (and, thus, of the health care demand) utilizing the latest data about the transmission and recovery rate of the disease. Consequently, the model seems to be suitable for discontinuous, non-mechanical (i.e. human) actions with unknown effectiveness, like those applied in the case of COVID-19. Secondly, we consider a feedback control problem in order to contain the pandemic at the capacity of the NHS (National Health System). As input parameter we consider the value \\begin{document}$ p $\\end{document} that reflects the intensity-effectiveness of the measures applied and as output the predicted maximum of infected people to be treated by NHS. The feedback control regulates \\begin{document}$ p $\\end{document} so that the number of infected people is manageable. Based on this approach, we address the following questions: (a) the limits of improvement of this approach; (b) the effectiveness of this approach; (c) the time horizon and timing of the application.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/JDG.2021004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

We utilize systems theory in the study of the implementation of non pharmaceutical strategies for the mitigation of the COVID-19 pandemic. We present two models. The first one is a model of predictive control with receding horizon and discontinuous actions of unknown costs for the implementation of adaptive triggering policies during the disease. This model is based on a periodic assessment of the peak of the pandemic (and, thus, of the health care demand) utilizing the latest data about the transmission and recovery rate of the disease. Consequently, the model seems to be suitable for discontinuous, non-mechanical (i.e. human) actions with unknown effectiveness, like those applied in the case of COVID-19. Secondly, we consider a feedback control problem in order to contain the pandemic at the capacity of the NHS (National Health System). As input parameter we consider the value \begin{document}$ p $\end{document} that reflects the intensity-effectiveness of the measures applied and as output the predicted maximum of infected people to be treated by NHS. The feedback control regulates \begin{document}$ p $\end{document} so that the number of infected people is manageable. Based on this approach, we address the following questions: (a) the limits of improvement of this approach; (b) the effectiveness of this approach; (c) the time horizon and timing of the application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缓解COVID-19大流行非药物政策实施的系统理论与分析
We utilize systems theory in the study of the implementation of non pharmaceutical strategies for the mitigation of the COVID-19 pandemic. We present two models. The first one is a model of predictive control with receding horizon and discontinuous actions of unknown costs for the implementation of adaptive triggering policies during the disease. This model is based on a periodic assessment of the peak of the pandemic (and, thus, of the health care demand) utilizing the latest data about the transmission and recovery rate of the disease. Consequently, the model seems to be suitable for discontinuous, non-mechanical (i.e. human) actions with unknown effectiveness, like those applied in the case of COVID-19. Secondly, we consider a feedback control problem in order to contain the pandemic at the capacity of the NHS (National Health System). As input parameter we consider the value \begin{document}$ p $\end{document} that reflects the intensity-effectiveness of the measures applied and as output the predicted maximum of infected people to be treated by NHS. The feedback control regulates \begin{document}$ p $\end{document} so that the number of infected people is manageable. Based on this approach, we address the following questions: (a) the limits of improvement of this approach; (b) the effectiveness of this approach; (c) the time horizon and timing of the application.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
期刊最新文献
Risk-sensitive control, single controller games and linear programming Network games and solutions from decomposition techniques Dynamic stability of the set of Nash equilibria in stable stochastic games Can the indifferent population affect the spread of rumors? Understanding the role of the environment on the dynamic of tourism and economic growth: New assumptions in terms of time and population growth rate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1