Study on mechanical properties of poplar timber bending members of ancient buildings strengthened with CFRP sheets embedded

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Computational Methods in Sciences and Engineering Pub Date : 2023-06-03 DOI:10.3233/jcm-226868
Zhaoyang Zhu, Boling Zhang, Wei-Wu Qian
{"title":"Study on mechanical properties of poplar timber bending members of ancient buildings strengthened with CFRP sheets embedded","authors":"Zhaoyang Zhu, Boling Zhang, Wei-Wu Qian","doi":"10.3233/jcm-226868","DOIUrl":null,"url":null,"abstract":"The reduction of the section area of timber beams in ancient buildings leads to the decline of their flexural mechanical properties. In order to study the effect of the reinforcement method with near-surface mounted CFRP sheets, three groups of 14 scaled poplar timber beam specimens were designed for static loading tests, and the strengthening effects of the new members replacing the damaged members and the concealed CFRP sheets strengthening the damaged members were compared. The results show that the ultimate flexural capacity and flexural stiffness of the strengthened timber beams are significantly improved compared with the simulated damaged beams; the bending performance of the optimum strengthened timber beam is equivalent to that of the undamaged beam. The distribution of the section strain of the strengthened timber beam along the height of the beam section basically conforms to the plane section assumption. A formula for calculating the ultimate flexural capacity of poplar timber beams strengthened with CFRP sheets is proposed. The calculated results are in good agreement with the experimental results.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"248 1","pages":"2609-2619"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The reduction of the section area of timber beams in ancient buildings leads to the decline of their flexural mechanical properties. In order to study the effect of the reinforcement method with near-surface mounted CFRP sheets, three groups of 14 scaled poplar timber beam specimens were designed for static loading tests, and the strengthening effects of the new members replacing the damaged members and the concealed CFRP sheets strengthening the damaged members were compared. The results show that the ultimate flexural capacity and flexural stiffness of the strengthened timber beams are significantly improved compared with the simulated damaged beams; the bending performance of the optimum strengthened timber beam is equivalent to that of the undamaged beam. The distribution of the section strain of the strengthened timber beam along the height of the beam section basically conforms to the plane section assumption. A formula for calculating the ultimate flexural capacity of poplar timber beams strengthened with CFRP sheets is proposed. The calculated results are in good agreement with the experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFRP嵌板加固古建筑杨木受弯构件力学性能研究
古建筑木梁截面面积的减小导致其抗弯力学性能下降。为了研究近表面贴装CFRP布加固方法的效果,设计了3组14根带尺寸的杨木梁试件进行静载试验,比较了新构件替代损伤构件和隐蔽CFRP布加固损伤构件的加固效果。结果表明:加固后木梁的极限抗弯承载力和抗弯刚度较模拟损伤梁有显著提高;优化后的加固梁的抗弯性能与未损伤梁相当。加固木梁截面应变沿梁段高度的分布基本符合平面截面假设。提出了CFRP布加固杨木梁的极限抗弯承载力计算公式。计算结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
152
期刊介绍: The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.
期刊最新文献
Identification and modelling of parameters for the information-physical-social convergence characteristics of user-side flexible resources Application of Internet of Things and multimedia technology in English online teaching Research on prediction model of scaling in ASP flooding based on data mining Diversification of residents’ consumption structure based on ELES model Research on adaptive selection method of radiation sources in passive radar based on GNSS signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1