A Fast Hidden Surface Removal Approach for Complex SAR Scene Based on Adaptive Ray-tube Splitting Method

Q2 Physics and Astronomy 雷达学报 Pub Date : 2013-05-03 DOI:10.3724/SP.J.1300.2012.20064
Dong Chunzhu, Yin Hongcheng, Wang Chao
{"title":"A Fast Hidden Surface Removal Approach for Complex SAR Scene Based on Adaptive Ray-tube Splitting Method","authors":"Dong Chunzhu, Yin Hongcheng, Wang Chao","doi":"10.3724/SP.J.1300.2012.20064","DOIUrl":null,"url":null,"abstract":"Traditional hidden surface removal algorithm based on hardware Z-Buffer technique cannot give attention to precision or efficiency at the same time when dealing with the non-uniform triangulated SAR (Synthetic Aperture Radar) scene model. A novel high-precision hidden surface removal approach using fast ray-tube splitting algorithm is proposed, where the SAR scene hidden surface removal problem is decomposed into two simple procedures, i.e. a Delaunay triangulator is used to generate the initial ray tubes from the projected point clouds of all incident visible vertices, then an adaptive ray-tube splitting method is adopted to carry out the complex scene shading situations and resultant visible model reconstruction. Simulation results of typical aircraft and T-72 tank show that, the new approach is feasible and effective.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"1 1","pages":"436-440"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2012.20064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

Abstract

Traditional hidden surface removal algorithm based on hardware Z-Buffer technique cannot give attention to precision or efficiency at the same time when dealing with the non-uniform triangulated SAR (Synthetic Aperture Radar) scene model. A novel high-precision hidden surface removal approach using fast ray-tube splitting algorithm is proposed, where the SAR scene hidden surface removal problem is decomposed into two simple procedures, i.e. a Delaunay triangulator is used to generate the initial ray tubes from the projected point clouds of all incident visible vertices, then an adaptive ray-tube splitting method is adopted to carry out the complex scene shading situations and resultant visible model reconstruction. Simulation results of typical aircraft and T-72 tank show that, the new approach is feasible and effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应射线管分割法的复杂SAR场景隐藏面快速去除方法
传统的基于硬件Z-Buffer技术的隐面去除算法在处理非均匀三角合成孔径雷达场景模型时,不能同时兼顾精度和效率。提出了一种新的基于快速射线管分割算法的高精度隐藏面去除方法,该方法将SAR场景隐藏面去除问题分解为两个简单的步骤,即利用Delaunay三角剖分器从所有入射可见顶点的投影点云中生成初始射线管,然后采用自适应射线管分割方法进行复杂场景遮阳情况和由此产生的可见模型重建。典型飞机和T-72坦克的仿真结果表明,该方法是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
雷达学报
雷达学报 Physics and Astronomy-Instrumentation
CiteScore
4.10
自引率
0.00%
发文量
882
期刊介绍: Information not localized
期刊最新文献
Integrated Chip Technologies for Microwave Photonics Distributed Multi-target Localization System Based on Optical Wavelength Division Multiplexing Network A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1