Zeng Tao, Pi-lei Yin, Xiao-peng Yang, Hua-jian Fan
{"title":"Time and Phase Synchronization for Distributed Aperture Coherent Radar","authors":"Zeng Tao, Pi-lei Yin, Xiao-peng Yang, Hua-jian Fan","doi":"10.3724/SP.J.1300.2013.20104","DOIUrl":null,"url":null,"abstract":"As a new radar technology, the distributed aperture coherent radar is expected to be the next generation radar, which is easier to transport and less expensive than the traditional large aperture radar. However, the time synchronization and phase synchronization are key issues to be addressed for the distributed aperture coherent radar. In this paper, the error sources of time synchronization and phase synchronization are analyzed, and the corresponding mathematical models are first derived. Then, the impact of synchronization errors on the coherent performance is simulated, and the accuracy of time and phase synchronization is presented based on the simulation results. Finally, the noncorrelation transmission scheme and the calibration scheme based on the wired transmission are proposed to realize the time and phase synchronization, respectively. Research of the synchronization problem could be very helpful to realize the new radar technology of distributed aperture coherent","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2013.20104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 11
Abstract
As a new radar technology, the distributed aperture coherent radar is expected to be the next generation radar, which is easier to transport and less expensive than the traditional large aperture radar. However, the time synchronization and phase synchronization are key issues to be addressed for the distributed aperture coherent radar. In this paper, the error sources of time synchronization and phase synchronization are analyzed, and the corresponding mathematical models are first derived. Then, the impact of synchronization errors on the coherent performance is simulated, and the accuracy of time and phase synchronization is presented based on the simulation results. Finally, the noncorrelation transmission scheme and the calibration scheme based on the wired transmission are proposed to realize the time and phase synchronization, respectively. Research of the synchronization problem could be very helpful to realize the new radar technology of distributed aperture coherent
期刊介绍:
Journal of Radars was founded in 2012 by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (formerly the Institute of Electronics) and the China Radar Industry Association (CRIA), which is located in the high-end academic journal and academic exchange platform in the field of radar, and is committed to promoting and leading the scientific and technological development in the field of radar. The journal can publish Chinese papers and English papers, and is now a bimonthly journal.
Journal of Radars focuses on theory, originality and foresight, and its scope of coverage mainly includes: radar theory and system, radar signal and data processing technology, radar imaging technology, radar identification and application technology.
Journal of Radars has been included in domestic core journals and foreign Scopus, Ei and other databases, and was selected as ‘China's high-quality science and technology journals’, and ranked the first in the category of electronic technology and communication technology in the ‘Chinese Core Journals List (2023 Edition)’.