Zeng Tao, Pi-lei Yin, Xiao-peng Yang, Hua-jian Fan
{"title":"Time and Phase Synchronization for Distributed Aperture Coherent Radar","authors":"Zeng Tao, Pi-lei Yin, Xiao-peng Yang, Hua-jian Fan","doi":"10.3724/SP.J.1300.2013.20104","DOIUrl":null,"url":null,"abstract":"As a new radar technology, the distributed aperture coherent radar is expected to be the next generation radar, which is easier to transport and less expensive than the traditional large aperture radar. However, the time synchronization and phase synchronization are key issues to be addressed for the distributed aperture coherent radar. In this paper, the error sources of time synchronization and phase synchronization are analyzed, and the corresponding mathematical models are first derived. Then, the impact of synchronization errors on the coherent performance is simulated, and the accuracy of time and phase synchronization is presented based on the simulation results. Finally, the noncorrelation transmission scheme and the calibration scheme based on the wired transmission are proposed to realize the time and phase synchronization, respectively. Research of the synchronization problem could be very helpful to realize the new radar technology of distributed aperture coherent","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2013.20104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 11
Abstract
As a new radar technology, the distributed aperture coherent radar is expected to be the next generation radar, which is easier to transport and less expensive than the traditional large aperture radar. However, the time synchronization and phase synchronization are key issues to be addressed for the distributed aperture coherent radar. In this paper, the error sources of time synchronization and phase synchronization are analyzed, and the corresponding mathematical models are first derived. Then, the impact of synchronization errors on the coherent performance is simulated, and the accuracy of time and phase synchronization is presented based on the simulation results. Finally, the noncorrelation transmission scheme and the calibration scheme based on the wired transmission are proposed to realize the time and phase synchronization, respectively. Research of the synchronization problem could be very helpful to realize the new radar technology of distributed aperture coherent