{"title":"Performance Analysis and Image Processing of Phase-modulated Signal on Airborne Synthetic Aperture Ladar","authors":"Jianbo Du, Dao-jing Li, Ma Meng","doi":"10.3724/SP.J.1300.2014.13094","DOIUrl":null,"url":null,"abstract":": In this study, the performance of three phase-modulated signals used in airborne Synthetic Aperture Ladar (SAL) is investigated. The transmitting and receiving modes and imaging processing methods for these signals are studied. Considering that the swath of the airborne SAL is very narrow, in order to reduce the AD sampling rate of the wideband signal, a “phase-dechirping” receiving mode is proposed for the phase-modulated signal based on the Linear Frequency Modulation (LFM) signal. The imaging simulation results for these three phase-modulated signals validate the effectiveness of the proposed method.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2014.13094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
: In this study, the performance of three phase-modulated signals used in airborne Synthetic Aperture Ladar (SAL) is investigated. The transmitting and receiving modes and imaging processing methods for these signals are studied. Considering that the swath of the airborne SAL is very narrow, in order to reduce the AD sampling rate of the wideband signal, a “phase-dechirping” receiving mode is proposed for the phase-modulated signal based on the Linear Frequency Modulation (LFM) signal. The imaging simulation results for these three phase-modulated signals validate the effectiveness of the proposed method.
期刊介绍:
Journal of Radars was founded in 2012 by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (formerly the Institute of Electronics) and the China Radar Industry Association (CRIA), which is located in the high-end academic journal and academic exchange platform in the field of radar, and is committed to promoting and leading the scientific and technological development in the field of radar. The journal can publish Chinese papers and English papers, and is now a bimonthly journal.
Journal of Radars focuses on theory, originality and foresight, and its scope of coverage mainly includes: radar theory and system, radar signal and data processing technology, radar imaging technology, radar identification and application technology.
Journal of Radars has been included in domestic core journals and foreign Scopus, Ei and other databases, and was selected as ‘China's high-quality science and technology journals’, and ranked the first in the category of electronic technology and communication technology in the ‘Chinese Core Journals List (2023 Edition)’.