Polymer based membranes for propylene/propane separation: CMS, MOF and polymer electrolyte membranes

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2022-01-01 DOI:10.3934/matersci.2022012
X. Chen, Anguo Xiao, D. Rodrigue
{"title":"Polymer based membranes for propylene/propane separation: CMS, MOF and polymer electrolyte membranes","authors":"X. Chen, Anguo Xiao, D. Rodrigue","doi":"10.3934/matersci.2022012","DOIUrl":null,"url":null,"abstract":"Propylene/propane separations are generally performed by distillation which are energy intensive and costly to build and operate. There is therefore high interest to develop new separation technologies like membrane modules. In our previous paper, we collected, analyzed and reported data for neat polymers and mixed matrix membranes (MMM) based on flat and hollow fiber configurations for propylene/propane separations. In this second part, we collected the data for carbon molecular sieving (CMS) membranes from polymer pyrolysis reaction and metal-organic framework (MOF) membranes from different fabrication methods, as well as data on facilitated transport membrane-polymer electrolyte membranes (PEM). CMS membranes show great potential for C3H6/C3H8 separation with an optimum pyrolysis temperature around 500–600 ℃. However, physical aging is a concern as the micro-pores shrink over time leading to lower permeability. The performance of MOF membranes are above the 2020 upper bound of polymer-based membranes, but have limited commercial application because they are fragile and difficult to produce. Finally, facilitated transport membranes show excellent propylene/propane separation performance, but are less stable compared to commercial polymeric membranes limiting their long-term operation and practical applications. As usual, there is no universal membrane and the selection must be made based on the operating conditions.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Propylene/propane separations are generally performed by distillation which are energy intensive and costly to build and operate. There is therefore high interest to develop new separation technologies like membrane modules. In our previous paper, we collected, analyzed and reported data for neat polymers and mixed matrix membranes (MMM) based on flat and hollow fiber configurations for propylene/propane separations. In this second part, we collected the data for carbon molecular sieving (CMS) membranes from polymer pyrolysis reaction and metal-organic framework (MOF) membranes from different fabrication methods, as well as data on facilitated transport membrane-polymer electrolyte membranes (PEM). CMS membranes show great potential for C3H6/C3H8 separation with an optimum pyrolysis temperature around 500–600 ℃. However, physical aging is a concern as the micro-pores shrink over time leading to lower permeability. The performance of MOF membranes are above the 2020 upper bound of polymer-based membranes, but have limited commercial application because they are fragile and difficult to produce. Finally, facilitated transport membranes show excellent propylene/propane separation performance, but are less stable compared to commercial polymeric membranes limiting their long-term operation and practical applications. As usual, there is no universal membrane and the selection must be made based on the operating conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于丙烯/丙烷分离的聚合物基膜:CMS、MOF和聚合物电解质膜
丙烯/丙烷分离通常通过蒸馏进行,这是能源密集型的,建造和操作成本很高。因此,人们对开发膜组件等新的分离技术非常感兴趣。在我们之前的论文中,我们收集、分析和报告了基于扁平和中空纤维结构的整齐聚合物和混合基质膜(MMM)用于丙烯/丙烷分离的数据。在第二部分中,我们收集了来自聚合物热解反应的碳分子筛(CMS)膜和不同制备方法的金属有机骨架(MOF)膜的数据,以及促进传输膜-聚合物电解质膜(PEM)的数据。CMS膜具有较好的分离C3H6/C3H8的潜力,最佳热解温度为500 ~ 600℃。然而,物理老化是一个问题,因为微孔随着时间的推移会收缩,导致渗透率降低。MOF膜的性能高于聚合物基膜的2020年上限,但由于其易碎且难以生产,因此限制了其商业应用。最后,便利转运膜表现出优异的丙烯/丙烷分离性能,但与商业聚合物膜相比,稳定性较差,限制了其长期运行和实际应用。通常,没有通用膜,必须根据操作条件进行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1