Seismic response of RC frames equipped with buckling-restrained braces having different yielding lengths

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2022-01-01 DOI:10.3934/matersci.2022022
M. Meshaly, Hamdy Abou-Elfath
{"title":"Seismic response of RC frames equipped with buckling-restrained braces having different yielding lengths","authors":"M. Meshaly, Hamdy Abou-Elfath","doi":"10.3934/matersci.2022022","DOIUrl":null,"url":null,"abstract":"Buckling-restrained braces (BRBs) have proven to be a valuable earthquake resisting system. They demonstrated substantial ability in providing structures with ductility and energy dissipation. However, they are prone to exhibit large residual deformations after earthquake loading because of their low post-yield stiffnesses. In this study, the seismic response of RC frames equipped with BRBs has been investigated. The focus of this research work is on evaluating the effect of the BRB yielding-core length on both the maximum and the residual lateral deformations of the braced RC frames. This is achieved by performing inelastic static pushover and dynamic time-history analyses on three- and nine-story X-braced RC frames having yielding-core length ratios of 25%, 50%, and 75% of the total brace length. The effects of the yielding-core length on both the maximum and the residual lateral deformations of the braced RC frames have been evaluated. Also, the safety of the short-yielding-core BRBs against fracture failures has been checked. An empirical equation has been derived for estimating the critical length of the BRB yielding cores. The results indicated that the high strain hardening capability of reduced length yielding-cores improves the post-yield stiffness and consequently reduces the maximum and residual drifts of the braced RC frames.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Buckling-restrained braces (BRBs) have proven to be a valuable earthquake resisting system. They demonstrated substantial ability in providing structures with ductility and energy dissipation. However, they are prone to exhibit large residual deformations after earthquake loading because of their low post-yield stiffnesses. In this study, the seismic response of RC frames equipped with BRBs has been investigated. The focus of this research work is on evaluating the effect of the BRB yielding-core length on both the maximum and the residual lateral deformations of the braced RC frames. This is achieved by performing inelastic static pushover and dynamic time-history analyses on three- and nine-story X-braced RC frames having yielding-core length ratios of 25%, 50%, and 75% of the total brace length. The effects of the yielding-core length on both the maximum and the residual lateral deformations of the braced RC frames have been evaluated. Also, the safety of the short-yielding-core BRBs against fracture failures has been checked. An empirical equation has been derived for estimating the critical length of the BRB yielding cores. The results indicated that the high strain hardening capability of reduced length yielding-cores improves the post-yield stiffness and consequently reduces the maximum and residual drifts of the braced RC frames.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同屈服长度约束屈曲支撑钢筋混凝土框架的地震反应
抗屈曲支撑是一种很有价值的抗震体系。它们在提供结构延性和耗能方面表现出了实质性的能力。然而,由于其屈服后刚度较低,在地震荷载作用下容易出现较大的残余变形。在本研究中,研究了装有brb的RC框架的地震反应。本研究的重点是评估BRB屈服核长度对支撑RC框架的最大侧向变形和剩余侧向变形的影响。这是通过对三层和九层x支撑RC框架进行非弹性静态推覆和动态时程分析来实现的,这些框架的屈服核心长度比分别为总支撑长度的25%、50%和75%。研究了屈服核长度对钢筋混凝土框架最大侧向变形和残余侧向变形的影响。此外,还对短屈服岩心brb抗破裂失效的安全性进行了验证。推导出了一个估算BRB屈服岩心临界长度的经验方程。结果表明:减长屈服芯的高应变硬化能力提高了后屈服刚度,从而降低了支撑RC框架的最大位移和残余位移;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1