Mechanical properties and failure analysis of laminated magnesium-intermetallic composites

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2022-01-01 DOI:10.3934/matersci.2022034
M. Konieczny
{"title":"Mechanical properties and failure analysis of laminated magnesium-intermetallic composites","authors":"M. Konieczny","doi":"10.3934/matersci.2022034","DOIUrl":null,"url":null,"abstract":"Laminated Mg-intermetallic composites were successfully fabricated by reaction synthesis in vacuum using 1 mm thick magnesium sheets and 0.25 mm thick copper foils. The final microstructure consisted of alternating layers of a hypoeutectic alloy containing crystals of CuMg2 and eutectic mixture of CuMg2 and solid solution of copper in magnesium and unreacted magnesium. The mechanical properties and fracture behavior of the fabricated composites were examined under different loading directions through compression, three-point bending and impact tests. The results indicated that the composites exhibited anisotropic features. The specimens compressed in the parallel direction failed by cracking along the layers of intermetallics and buckling of magnesium layers. The specimens compressed in the perpendicular direction failed by transverse cracking in the intermetallic layers and fallowing catastrophic cracking inclined about 45° to the interface of both intermetallic and magnesium layers. The flexural strength of the composites was higher in perpendicular than in parallel direction. When the load parallel to the layers was applied, the failure occurred by cleavage mode showing limited plastic deformation. When the load perpendicular to the layers was applied, the failure occurred by transverse cracking of the intermetallic layers and gradual cracking of the Mg layers. The Charpy-tested samples showed the same fracture behavior as the bend-tested specimens, which indicated that the same mechanisms operated at both high impact rate and low bending-test rate.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laminated Mg-intermetallic composites were successfully fabricated by reaction synthesis in vacuum using 1 mm thick magnesium sheets and 0.25 mm thick copper foils. The final microstructure consisted of alternating layers of a hypoeutectic alloy containing crystals of CuMg2 and eutectic mixture of CuMg2 and solid solution of copper in magnesium and unreacted magnesium. The mechanical properties and fracture behavior of the fabricated composites were examined under different loading directions through compression, three-point bending and impact tests. The results indicated that the composites exhibited anisotropic features. The specimens compressed in the parallel direction failed by cracking along the layers of intermetallics and buckling of magnesium layers. The specimens compressed in the perpendicular direction failed by transverse cracking in the intermetallic layers and fallowing catastrophic cracking inclined about 45° to the interface of both intermetallic and magnesium layers. The flexural strength of the composites was higher in perpendicular than in parallel direction. When the load parallel to the layers was applied, the failure occurred by cleavage mode showing limited plastic deformation. When the load perpendicular to the layers was applied, the failure occurred by transverse cracking of the intermetallic layers and gradual cracking of the Mg layers. The Charpy-tested samples showed the same fracture behavior as the bend-tested specimens, which indicated that the same mechanisms operated at both high impact rate and low bending-test rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层合镁-金属间化合物复合材料的力学性能及失效分析
以1 mm厚的镁片和0.25 mm厚的铜箔为材料,通过真空反应合成成功制备了层状镁金属间复合材料。最终的显微组织由含有CuMg2晶体的亚共晶合金、CuMg2和铜在镁和未反应镁中的固溶体的共晶混合物组成的交替层组成。通过压缩、三点弯曲和冲击试验,研究了复合材料在不同加载方向下的力学性能和断裂行为。结果表明,复合材料具有各向异性。平行方向压缩试样主要表现为沿金属间化合物层开裂和镁层屈曲。垂直方向压缩试样的破坏主要表现为金属间层的横向开裂和向金属间层和镁层界面倾斜约45°的灾难性开裂。复合材料在垂直方向的抗弯强度高于平行方向。当施加平行于各层的荷载时,破坏以解理模式发生,塑性变形有限。竖向荷载作用下,金属间层发生横向开裂,Mg层逐渐开裂。在高冲击速率和低弯曲速率下,charpy测试样品的断裂行为与弯曲测试样品相同,这表明相同的机制在高冲击速率和低弯曲测试速率下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1