Synthesis of methyl esters from palm oil, candlenut oil, and sunflower seed oil and their corrosion phenomena on iron nail

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2022-01-01 DOI:10.3934/matersci.2022044
A. Santoso, Novita Agustin, S. Sumari, Siti Marfuah, R. Retnosari, I. B. Rachman, A. Wijaya, Muhammad Roy Asrori
{"title":"Synthesis of methyl esters from palm oil, candlenut oil, and sunflower seed oil and their corrosion phenomena on iron nail","authors":"A. Santoso, Novita Agustin, S. Sumari, Siti Marfuah, R. Retnosari, I. B. Rachman, A. Wijaya, Muhammad Roy Asrori","doi":"10.3934/matersci.2022044","DOIUrl":null,"url":null,"abstract":"Biodiesel products show corrosive properties. Biodiesel contains components of saturated and unsaturated esters which tend to be unstable, sensitive to light, temperature, and metal ions. Thus, the study aims to synthesize biodiesel from various vegetable oils (palm oil, sunflower seed oil, and candlenut oil), and to analyze its corrosiveness to ferrous nails and characterization of biodiesel. The research stages were: synthesis of methyl ester and its characterization, and corrosion test. The results showed that the methyl ester characteristics of the samples meet requirements with SNI7182 : 2015. In GC-MS results, the largest components of methyl esters from candlenut oil and sunflower seed oil were 35.04% methyl oleate and 46.79% methyl oleate respectively, while in palm oil, the largest components were 41.60% methyl oleate and 41.16%. methyl palmitate. Corrosion test showed that the corrosion rate of ferrous nail in biodiesel at room temperature was lower than 70 ℃. Based on GC-MS and SEM results, biodiesel contained high unsaturated fatty acids and had a corrosion rate, i.e., at room temperature, the methyl ester of palm oil, candlenut oil, and sunflower seed oil were 0.006 mpy, 0.011 mpy, and 0.011 mpy respectively, while at 70 ℃, they were 0.011 mpy, 0.016 mpy, and 0.017 mpy, respectively. The results corresponded to SEM results at high temperature and significantly high content of unsaturated fatty acids. It was indicated by the formation of pits.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Biodiesel products show corrosive properties. Biodiesel contains components of saturated and unsaturated esters which tend to be unstable, sensitive to light, temperature, and metal ions. Thus, the study aims to synthesize biodiesel from various vegetable oils (palm oil, sunflower seed oil, and candlenut oil), and to analyze its corrosiveness to ferrous nails and characterization of biodiesel. The research stages were: synthesis of methyl ester and its characterization, and corrosion test. The results showed that the methyl ester characteristics of the samples meet requirements with SNI7182 : 2015. In GC-MS results, the largest components of methyl esters from candlenut oil and sunflower seed oil were 35.04% methyl oleate and 46.79% methyl oleate respectively, while in palm oil, the largest components were 41.60% methyl oleate and 41.16%. methyl palmitate. Corrosion test showed that the corrosion rate of ferrous nail in biodiesel at room temperature was lower than 70 ℃. Based on GC-MS and SEM results, biodiesel contained high unsaturated fatty acids and had a corrosion rate, i.e., at room temperature, the methyl ester of palm oil, candlenut oil, and sunflower seed oil were 0.006 mpy, 0.011 mpy, and 0.011 mpy respectively, while at 70 ℃, they were 0.011 mpy, 0.016 mpy, and 0.017 mpy, respectively. The results corresponded to SEM results at high temperature and significantly high content of unsaturated fatty acids. It was indicated by the formation of pits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
棕榈油、花生油和葵花籽油甲酯的合成及其对铁钉的腐蚀现象
生物柴油产品具有腐蚀性。生物柴油含有饱和和不饱和酯的成分,这些成分往往不稳定,对光、温度和金属离子敏感。因此,本研究旨在利用多种植物油(棕榈油、葵花籽油、核桃油)合成生物柴油,并分析其对铁质钉子的腐蚀性和生物柴油的表征。研究阶段为:甲酯的合成及其表征、腐蚀试验。结果表明,样品的甲酯特性符合SNI7182: 2015的要求。GC-MS分析结果显示,核桃油和葵花籽油中油酸甲酯含量最高,分别为35.04%和46.79%,棕榈油中油酸甲酯含量最高,分别为41.60%和41.16%。棕榈酸甲酯。腐蚀试验表明,铁钉在生物柴油中的室温腐蚀速率低于70℃。GC-MS和SEM结果表明,生物柴油含有较高的不饱和脂肪酸,具有一定的腐蚀速率,即室温下棕榈油、核桃油和葵花籽油的甲酯分别为0.006 mpy、0.011 mpy和0.011 mpy, 70℃时分别为0.011 mpy、0.016 mpy和0.017 mpy。结果与高温扫描电镜结果一致,且不饱和脂肪酸含量明显较高。凹坑的形成表明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1