Investigation of novel turbulator with and without twisted configuration under turbulent forced convection of a CuO/water nanofluid flow inside a parabolic trough solar collector

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2023-01-01 DOI:10.3934/matersci.2023007
O. Ouabouch, Imad Ait Laasri, ounir Kriraa, M. Lamsaadi
{"title":"Investigation of novel turbulator with and without twisted configuration under turbulent forced convection of a CuO/water nanofluid flow inside a parabolic trough solar collector","authors":"O. Ouabouch, Imad Ait Laasri, ounir Kriraa, M. Lamsaadi","doi":"10.3934/matersci.2023007","DOIUrl":null,"url":null,"abstract":"In this study, we numerically investigated the hydrothermal performance of a parabolic trough solar collector system in which nanofluids are used to transfer thermal energy. The single-phase model has been used to evaluate the respective influences of the spherical shape of nanoparticles with a volume fraction of (φ = 3%), Reynolds number varying between 50,000 ≤ Re ≤ 250,000 and the insertion of a turbulator with and without a twisted configuration on the hydrothermal characteristics created by the turbulent forced convection of a CuO/water nanofluid. The shaped turbulator (+) inserted in the absorber tube had a length turb_L = 2.4 m, a height turb_H = 40 mm and a width turb_t = 2 mm. In the second configuration, the considered turbulator was twisted (N_twist = 5, 10 and 15 twists). The turbulator was positioned at 0.6 m from the inlet of the tube and 1 m from the outlet of the collector. The studied performances included the heat transfer characteristics, pressure drop, friction factor, thermal efficiency, temperature and velocity distribution of the outlet field. The most significant contribution of this study is the proposal of the best parameters to increase the thermal and hydraulic efficiency of parabolic troughs by adding a new turbulator with the considered twists.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we numerically investigated the hydrothermal performance of a parabolic trough solar collector system in which nanofluids are used to transfer thermal energy. The single-phase model has been used to evaluate the respective influences of the spherical shape of nanoparticles with a volume fraction of (φ = 3%), Reynolds number varying between 50,000 ≤ Re ≤ 250,000 and the insertion of a turbulator with and without a twisted configuration on the hydrothermal characteristics created by the turbulent forced convection of a CuO/water nanofluid. The shaped turbulator (+) inserted in the absorber tube had a length turb_L = 2.4 m, a height turb_H = 40 mm and a width turb_t = 2 mm. In the second configuration, the considered turbulator was twisted (N_twist = 5, 10 and 15 twists). The turbulator was positioned at 0.6 m from the inlet of the tube and 1 m from the outlet of the collector. The studied performances included the heat transfer characteristics, pressure drop, friction factor, thermal efficiency, temperature and velocity distribution of the outlet field. The most significant contribution of this study is the proposal of the best parameters to increase the thermal and hydraulic efficiency of parabolic troughs by adding a new turbulator with the considered twists.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抛物线槽太阳能集热器内CuO/水纳米流体紊流强迫对流条件下具有和不具有扭曲构型的新型紊流器研究
在这项研究中,我们数值研究了利用纳米流体传递热能的抛物槽太阳能集热器系统的热液性能。采用单相模型研究了体积分数为(φ = 3%)的纳米颗粒的球形、雷诺数在50000≤Re≤250000之间以及是否插入具有扭曲构型的湍流器对CuO/水纳米流体湍流强制对流形成的热液特性的影响。插入吸收管的异形湍流器(+)长turb_L = 2.4 m,高turb_H = 40 mm,宽turb_t = 2mm。在第二种配置中,所考虑的湍流器被扭曲(N_twist = 5,10和15扭曲)。紊流器位于距管入口0.6 m处,距集热器出口1m处。研究的性能包括换热特性、压降、摩擦系数、热效率、出口场温度和速度分布。本研究最重要的贡献是提出了通过添加新的紊流器来提高抛物槽的热效率和水力效率的最佳参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1