Atomistic modeling and molecular dynamic simulation of polymer nanocomposites for thermal and mechanical property characterization: A review

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2023-01-01 DOI:10.3934/matersci.2023014
Nilesh Shahapure, Dattaji K. Shinde, A. Kelkar
{"title":"Atomistic modeling and molecular dynamic simulation of polymer nanocomposites for thermal and mechanical property characterization: A review","authors":"Nilesh Shahapure, Dattaji K. Shinde, A. Kelkar","doi":"10.3934/matersci.2023014","DOIUrl":null,"url":null,"abstract":"Epoxy resins are formed when epoxy monomers react with crosslinkers that have active hydrogen sites on them such as amine and anhydrides. These cross-linked structures are highly unpredictable and depend on different parameters during curing. Epoxy material when reinforced with nanoparticles has got importance because of its extraordinary enhanced mechanical and thermal properties for structural application. Experimentally it is challenging to tailor these nanostructures and manufacture epoxy-based nanocomposites with desired properties. An experimental approach to preparing these is tedious and costly. The improvement of such materials requires huge experimentation and a better level of control of their properties can't be accomplished up till now. There is a need for numerical experimentation to guide these experimental procedures. With the headway of computational techniques, an alternative for these experiments had given an effective method to characterize these nanocomposites and study their reaction kinetics. Molecular dynamics (MD) simulation is one such technique that works on density function theory and Newton*s second law to characterize these materials with different permutations and combinations during their curing. This review is carried out for MD simulation studies done to date on different epoxies and epoxy-based nanocomposites for their thermal, mechanical, and thermo-mechanical characterization.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Epoxy resins are formed when epoxy monomers react with crosslinkers that have active hydrogen sites on them such as amine and anhydrides. These cross-linked structures are highly unpredictable and depend on different parameters during curing. Epoxy material when reinforced with nanoparticles has got importance because of its extraordinary enhanced mechanical and thermal properties for structural application. Experimentally it is challenging to tailor these nanostructures and manufacture epoxy-based nanocomposites with desired properties. An experimental approach to preparing these is tedious and costly. The improvement of such materials requires huge experimentation and a better level of control of their properties can't be accomplished up till now. There is a need for numerical experimentation to guide these experimental procedures. With the headway of computational techniques, an alternative for these experiments had given an effective method to characterize these nanocomposites and study their reaction kinetics. Molecular dynamics (MD) simulation is one such technique that works on density function theory and Newton*s second law to characterize these materials with different permutations and combinations during their curing. This review is carried out for MD simulation studies done to date on different epoxies and epoxy-based nanocomposites for their thermal, mechanical, and thermo-mechanical characterization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高分子纳米复合材料热力学性能表征的原子模型和分子动力学模拟研究进展
当环氧单体与具有活性氢位点的交联剂如胺和酸酐反应时,形成环氧树脂。这些交联结构是高度不可预测的,并且取决于固化过程中的不同参数。纳米颗粒增强环氧树脂材料具有显著的力学性能和热性能,在结构应用中具有重要意义。在实验上,定制这些纳米结构并制造具有所需性能的环氧基纳米复合材料是一项挑战。用实验的方法来准备这些东西既繁琐又昂贵。这种材料的改进需要大量的实验,并且到目前为止还无法实现对其性能的更好控制。有必要用数值实验来指导这些实验过程。随着计算技术的发展,这些实验的替代方法为表征纳米复合材料和研究其反应动力学提供了有效的方法。分子动力学(MD)模拟就是利用密度函数理论和牛顿第二定律来表征这些材料在固化过程中不同排列和组合的一种技术。本文综述了迄今为止对不同环氧树脂和环氧基纳米复合材料的热、力学和热力学特性进行的MD模拟研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1