M. Skakov, V. Baklanov, G. Zhanbolatova, A. Miniyazov, I. Sokolov, Yernat Kozhakhmetov, T. Tulenbergenov, Nuriya Mukhamedova, O. Bukina, A. Gradoboev
{"title":"The effect of recrystallization annealing on the tungsten surface carbidization in a beam plasma discharge","authors":"M. Skakov, V. Baklanov, G. Zhanbolatova, A. Miniyazov, I. Sokolov, Yernat Kozhakhmetov, T. Tulenbergenov, Nuriya Mukhamedova, O. Bukina, A. Gradoboev","doi":"10.3934/matersci.2023030","DOIUrl":null,"url":null,"abstract":"Tungsten was chosen as the plasma facing material (PFM) of the ITER divertor. However, graphite and carbon-graphite materials are used as PFM in some research thermonuclear facilities, including the Kazakhstan materials science tokamak. This circumstance determines the interest in continuing the study of the formation of mixed layers under plasma irradiation. This article is devoted to the study of the effect of preliminary recrystallization annealing on the carbidization of the tungsten surface in a beam-plasma discharge (BPD), which is one of the ways to simulate the peripheral plasma of a tokamak. Experiments on preliminary isochoric and isothermal annealing of tungsten samples were carried out in the mode of direct heating of tungsten samples by an electron beam. The carbidization of tungsten samples after annealing was carried out in a methane atmosphere in the BPD at a temperature of 1000 ℃ for a duration of 3600 s. Optical microscopy (OM) and X-ray diffraction were used to analyze the structure of the tungsten surface. It has been established that differences in the structure arising during recrystallization annealing affect the transfer of carbon atoms in the near-surface area of tungsten and the formation of tungsten carbides (WC or W2C).","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Tungsten was chosen as the plasma facing material (PFM) of the ITER divertor. However, graphite and carbon-graphite materials are used as PFM in some research thermonuclear facilities, including the Kazakhstan materials science tokamak. This circumstance determines the interest in continuing the study of the formation of mixed layers under plasma irradiation. This article is devoted to the study of the effect of preliminary recrystallization annealing on the carbidization of the tungsten surface in a beam-plasma discharge (BPD), which is one of the ways to simulate the peripheral plasma of a tokamak. Experiments on preliminary isochoric and isothermal annealing of tungsten samples were carried out in the mode of direct heating of tungsten samples by an electron beam. The carbidization of tungsten samples after annealing was carried out in a methane atmosphere in the BPD at a temperature of 1000 ℃ for a duration of 3600 s. Optical microscopy (OM) and X-ray diffraction were used to analyze the structure of the tungsten surface. It has been established that differences in the structure arising during recrystallization annealing affect the transfer of carbon atoms in the near-surface area of tungsten and the formation of tungsten carbides (WC or W2C).
期刊介绍:
AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.