TRAFFIC CONTROL AT THE AIRPORT BASED ON ACOUSTIC SCANNING

IF 0.1 Q4 ACOUSTICS Akustika Pub Date : 2021-01-01 DOI:10.36336/akustika202141186
A. Shvetsov, Viktor Gromov
{"title":"TRAFFIC CONTROL AT THE AIRPORT BASED ON ACOUSTIC SCANNING","authors":"A. Shvetsov, Viktor Gromov","doi":"10.36336/akustika202141186","DOIUrl":null,"url":null,"abstract":"The round-the-clock vehicles operation at the airports, including in low visibility conditions with fog, snowfall, etc., requires the development of new methods for monitoring their traffic, including those that do not require direct visual contact between the dispatcher and the vehicles. In this study, a method for monitoring airport traffic based on acoustic scanning of the territory has been developed. The method allows you to control traffic remotely, including in conditions of ‘zero’ visibility. Controlled vehicles include ground vehicles that ensure airport operation, including tractors, tankers, buses for delivering passengers and the crew to the aircraft, snow plows, cars, etc. The method provides equipping the airport territory where vehicle traffic is possible with a network of acoustic sensors configured to detect noise generated by vehicle traffic, which allows you to receive traffic data on the airport territory. The structure of the airport traffic control system based on acoustic scanning and the algorithm of its operation is developed in the study for practical implementation of the method. To configure the acoustic sensors, which are the main element of the system, the noise generated by various types of airport vehicles was measured. The proposed method and the system implementing it can be used to prevent emergencies, as well as to ensure aviation security at airports.","PeriodicalId":42295,"journal":{"name":"Akustika","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Akustika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36336/akustika202141186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

Abstract

The round-the-clock vehicles operation at the airports, including in low visibility conditions with fog, snowfall, etc., requires the development of new methods for monitoring their traffic, including those that do not require direct visual contact between the dispatcher and the vehicles. In this study, a method for monitoring airport traffic based on acoustic scanning of the territory has been developed. The method allows you to control traffic remotely, including in conditions of ‘zero’ visibility. Controlled vehicles include ground vehicles that ensure airport operation, including tractors, tankers, buses for delivering passengers and the crew to the aircraft, snow plows, cars, etc. The method provides equipping the airport territory where vehicle traffic is possible with a network of acoustic sensors configured to detect noise generated by vehicle traffic, which allows you to receive traffic data on the airport territory. The structure of the airport traffic control system based on acoustic scanning and the algorithm of its operation is developed in the study for practical implementation of the method. To configure the acoustic sensors, which are the main element of the system, the noise generated by various types of airport vehicles was measured. The proposed method and the system implementing it can be used to prevent emergencies, as well as to ensure aviation security at airports.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于声波扫描的机场交通管制
机场的车辆24小时运行,包括在雾、降雪等能见度低的情况下,需要开发新的交通监控方法,包括不需要调度员和车辆直接视觉接触的方法。本研究发展了一种基于区域声学扫描的机场交通监测方法。该方法允许您远程控制交通,包括在“零”能见度条件下。受控车辆包括确保机场运行的地面车辆,包括拖拉机、油罐车、将乘客和机组人员运送到飞机上的公共汽车、扫雪机、汽车等。该方法为可能有车辆通行的机场区域配备声学传感器网络,该网络配置用于检测车辆通行产生的噪音,从而使您可以接收机场区域的交通数据。研究了基于声扫描的机场交通管制系统的结构和运行算法,为该方法的实际实施提供了理论依据。声学传感器是系统的主要组成部分,为了配置声学传感器,我们测量了各种类型的机场车辆产生的噪声。所提出的方法和实施该方法的系统可用于预防紧急情况,并确保机场的航空安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Akustika
Akustika ACOUSTICS-
CiteScore
0.80
自引率
0.00%
发文量
4
期刊最新文献
THE VIBRATION MEASUREMENT USING MICROCONTROLLERS NOISE REDUCTION ON AIR DISTRIBUTION GRILLES USING 3D PRINTED INFILL STRUCTURES OPTIMUM PROPAGATION IN OCEAN: THE COMPARISON BETWEEN NORMAL MODE AND EMPIRICAL FRANCOIS-GARRISON FORMULA TESTING A NOVEL HYBRID SPIRAL MICROPHONE ARRAY DESIGNED FOR PERFORMANCE AND PORTA DIFFRACTION OF A SPHERICAL WAVE BY A HARD HALF-PLANE: POLYNOMIAL FORMULATION OF EDGE-DIFFRACTED FIELD IN THE FREQUENCY DOMAIN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1