A part-transport design and the system for micro-forming applications

Q4 Materials Science 塑性工程学报 Pub Date : 2011-12-01 DOI:10.3969/J.ISSN.1007-2012.2011.06.014
A. Razali, Jie-Hua Zhao, F. Law, Y. Qin
{"title":"A part-transport design and the system for micro-forming applications","authors":"A. Razali, Jie-Hua Zhao, F. Law, Y. Qin","doi":"10.3969/J.ISSN.1007-2012.2011.06.014","DOIUrl":null,"url":null,"abstract":"Efforts in micro-forming have been focused largely on fundamental studies and laboratory processes which may ignore some of the key issues related to production realization. A micro-forming machine alone, for example, without a proper handling-system, is seen to be impractical to meet industrial demands. Continuous production requires not just an efficient manufacturing machine, but also autonomous synchronization between the machine and the material-handling system itself. This is inclusive of the way in which the machine automatically transports the finished parts/products away from its working environment and automatically packs the parts/products for shipment. A handling-strategy was presented for the finished parts/products produced by micro-forming, with a focus on the investigation of the handling device and the development of design considerations for a new transportation system for a micro-sheet-forming machine developed at the University of Strathclyde, UK. FE simulation was employed to study the feeding characteristics and also the positional accuracy, and the system was constructed, followed by experimental validations.","PeriodicalId":39811,"journal":{"name":"塑性工程学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"塑性工程学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3969/J.ISSN.1007-2012.2011.06.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

Efforts in micro-forming have been focused largely on fundamental studies and laboratory processes which may ignore some of the key issues related to production realization. A micro-forming machine alone, for example, without a proper handling-system, is seen to be impractical to meet industrial demands. Continuous production requires not just an efficient manufacturing machine, but also autonomous synchronization between the machine and the material-handling system itself. This is inclusive of the way in which the machine automatically transports the finished parts/products away from its working environment and automatically packs the parts/products for shipment. A handling-strategy was presented for the finished parts/products produced by micro-forming, with a focus on the investigation of the handling device and the development of design considerations for a new transportation system for a micro-sheet-forming machine developed at the University of Strathclyde, UK. FE simulation was employed to study the feeding characteristics and also the positional accuracy, and the system was constructed, followed by experimental validations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
零件输送设计及微成形应用系统
微成形的研究主要集中在基础研究和实验室工艺上,而忽略了与生产实现相关的一些关键问题。例如,如果没有适当的处理系统,单靠一台微成形机是无法满足工业需求的。连续生产不仅需要一台高效的制造机器,还需要机器与物料搬运系统本身之间的自主同步。这包括机器自动将成品零件/产品从其工作环境中运输出来并自动包装零件/产品以供运输的方式。提出了一种微成形成品的处理策略,重点研究了处理装置的研究,并为英国斯特拉斯克莱德大学开发的微板料成型机开发了一种新的运输系统。通过有限元仿真研究了该系统的进给特性和定位精度,构建了该系统,并进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
塑性工程学报
塑性工程学报 Materials Science-Polymers and Plastics
CiteScore
1.20
自引率
0.00%
发文量
4602
期刊介绍:
期刊最新文献
Mechanism of plastic deformation in chain die forming of variable cross section Multi-scale modelling of mechanical behavior of dual-phase steels based on realistic microstructure Mechanical properties of nanostructured titanium prepared by cryogenic rolling A part-transport design and the system for micro-forming applications Two methods for modeling the flow stress behavior of magnesium alloy AZ61 under hot deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1