A. Fauzi, A. Junaedi, I. Lubis, M. Ghulamahdi, H. Aswidinnoor, J. Sakagami
{"title":"Evaluation of rice genotypes on seed attributes and agronomic performance for developing direct-seeded cultivar","authors":"A. Fauzi, A. Junaedi, I. Lubis, M. Ghulamahdi, H. Aswidinnoor, J. Sakagami","doi":"10.3934/agrfood.2022001","DOIUrl":null,"url":null,"abstract":"Direct seeding of rice (DSR) may give benefit in using water and labor more efficient and reduce production costs. This study purposes to investigate the character of the seeds, their early vigor traits, the growth and development of rice plants for developing DSR cultivar. The research was conducted in four stages: the measurement of the size of the seed, endosperm, and embryo; the germination test in the laboratory; seedling test using experimental pots; and testing the agronomic performance on transplanting and direct seeding methods in a plastic house. Seed material used eight breeding lines of IPB University and two released varieties. The results of study showed that each genotype had different characteristics of seed, endosperm, and embryo in both weight and area. Seed weight becomes the most dominant in the emergence of superior EV traits, whereas the more seed weight indicates faster radicle emergence and more weight of seedling. DSR method compared to transplanting showed performance such as taller plant, higher leaf area and photosynthesis rate at early growth stage, earlier heading time, and higher plant dry weight since early growth until 65 days old. The seed characters have positively correlation to dry weight of seedlings, number of leaves, leaf area, and canopy dry weight. We also found that higher area of endosperm and embryo significantly correlated to have faster plumule emergence, higher leaf area and plant height. Candidate genotypes for DSR would be further investigated in the field trial agronomically.","PeriodicalId":44793,"journal":{"name":"AIMS Agriculture and Food","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Agriculture and Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/agrfood.2022001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct seeding of rice (DSR) may give benefit in using water and labor more efficient and reduce production costs. This study purposes to investigate the character of the seeds, their early vigor traits, the growth and development of rice plants for developing DSR cultivar. The research was conducted in four stages: the measurement of the size of the seed, endosperm, and embryo; the germination test in the laboratory; seedling test using experimental pots; and testing the agronomic performance on transplanting and direct seeding methods in a plastic house. Seed material used eight breeding lines of IPB University and two released varieties. The results of study showed that each genotype had different characteristics of seed, endosperm, and embryo in both weight and area. Seed weight becomes the most dominant in the emergence of superior EV traits, whereas the more seed weight indicates faster radicle emergence and more weight of seedling. DSR method compared to transplanting showed performance such as taller plant, higher leaf area and photosynthesis rate at early growth stage, earlier heading time, and higher plant dry weight since early growth until 65 days old. The seed characters have positively correlation to dry weight of seedlings, number of leaves, leaf area, and canopy dry weight. We also found that higher area of endosperm and embryo significantly correlated to have faster plumule emergence, higher leaf area and plant height. Candidate genotypes for DSR would be further investigated in the field trial agronomically.
期刊介绍:
AIMS Agriculture and Food covers a broad array of topics pertaining to agriculture and food, including, but not limited to: Agricultural and food production and utilization Food science and technology Agricultural and food engineering Food chemistry and biochemistry Food materials Physico-chemical, structural and functional properties of agricultural and food products Agriculture and the environment Biorefineries in agricultural and food systems Food security and novel alternative food sources Traceability and regional origin of agricultural and food products Authentication of food and agricultural products Food safety and food microbiology Waste reduction in agriculture and food production and processing Animal science, aquaculture, husbandry and veterinary medicine Resources utilization and sustainability in food and agricultural production and processing Horticulture and plant science Agricultural economics.