Vegetation structure of bio-belts as agro-environmentally-climatic measures to support biodiversity on arable land: A case study

IF 1.9 Q2 AGRICULTURE, MULTIDISCIPLINARY AIMS Agriculture and Food Pub Date : 2022-01-01 DOI:10.3934/agrfood.2022054
Helena Hanusová, Karolína Juřenová, Erika Hurajová, M. Vaverková, J. Winkler
{"title":"Vegetation structure of bio-belts as agro-environmentally-climatic measures to support biodiversity on arable land: A case study","authors":"Helena Hanusová, Karolína Juřenová, Erika Hurajová, M. Vaverková, J. Winkler","doi":"10.3934/agrfood.2022054","DOIUrl":null,"url":null,"abstract":"Loss of biological diversity is one of the greatest challenges that our civilization must face nowadays. Reaction to the diminishing biodiversity of agricultural landscapes is various measures promoting free-living organisms. The study deals with the vegetation composition and structure of agro-environmental-climatic measures applied on arable land in operating conditions (intensively farmed regions of the Czech Republic). Additional study focus was applied to a popular measure of the feeding bio-belts. Bio-belts are not only hiding places for free-living animals but can provide them a rich food offer in the period from the harvest of main crops until winter. Thanks to the bio-belts, the landscape gains in biodiversity, and sloping sites can be protected from soil erosion. The vegetation of land parts used as bio-belts was assessed using phytocoenological relevés. Dominant plant species sown in the bio-belts were Avena sativa, Panicum miliaceum, Brassica oleracea var. acephala, Fagopyrum esculentum, Phacelia tanacetifolia, and Pisum arvense. Apart from the sown plants, there were also weeds occurring in the bio-belts, of which the most abundant were Chenopodium album, Amaranthus retroflexus, Setaria verticillata, Cirsium arvense, Equisetum arvense, etc. Risks connected with the realization of feeding bio-belts in respect of weeds occurring on arable land are negligible. Weeds from bio-belts have only a limited potential to spread to adjacent arable land. A potential spreading of weeds from the bio-belts to adjacent arable land was not demonstrated. On the contrary, thanks to its composition, the vegetation of bio-belts has the potential to extend the food offer for animals. Thus, bio-belts are useful for supporting biodiversity in regions intensively used for agriculture.","PeriodicalId":44793,"journal":{"name":"AIMS Agriculture and Food","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Agriculture and Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/agrfood.2022054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Loss of biological diversity is one of the greatest challenges that our civilization must face nowadays. Reaction to the diminishing biodiversity of agricultural landscapes is various measures promoting free-living organisms. The study deals with the vegetation composition and structure of agro-environmental-climatic measures applied on arable land in operating conditions (intensively farmed regions of the Czech Republic). Additional study focus was applied to a popular measure of the feeding bio-belts. Bio-belts are not only hiding places for free-living animals but can provide them a rich food offer in the period from the harvest of main crops until winter. Thanks to the bio-belts, the landscape gains in biodiversity, and sloping sites can be protected from soil erosion. The vegetation of land parts used as bio-belts was assessed using phytocoenological relevés. Dominant plant species sown in the bio-belts were Avena sativa, Panicum miliaceum, Brassica oleracea var. acephala, Fagopyrum esculentum, Phacelia tanacetifolia, and Pisum arvense. Apart from the sown plants, there were also weeds occurring in the bio-belts, of which the most abundant were Chenopodium album, Amaranthus retroflexus, Setaria verticillata, Cirsium arvense, Equisetum arvense, etc. Risks connected with the realization of feeding bio-belts in respect of weeds occurring on arable land are negligible. Weeds from bio-belts have only a limited potential to spread to adjacent arable land. A potential spreading of weeds from the bio-belts to adjacent arable land was not demonstrated. On the contrary, thanks to its composition, the vegetation of bio-belts has the potential to extend the food offer for animals. Thus, bio-belts are useful for supporting biodiversity in regions intensively used for agriculture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物带植被结构作为支持耕地生物多样性的农业环境-气候措施:个案研究
生物多样性的丧失是当今人类文明必须面对的最大挑战之一。对农业景观生物多样性减少的反应是采取各种措施促进自由生物。该研究涉及在作业条件下(捷克共和国集约耕作地区)的可耕地上应用的农业环境-气候措施的植被组成和结构。额外的研究重点应用于一种流行的饲养生物带测量方法。生物带不仅是自由生活的动物的藏身之处,而且可以在主要作物收获到冬季期间为它们提供丰富的食物。由于生物带,景观的生物多样性增加,坡地可以免受土壤侵蚀。利用植物群落学相关数据对生物带部分土地的植被进行了评价。在生物带播种的优势植物种为苜蓿、千穗草、白头甘蓝、荞麦、白穗草和鹤尾草。除播种植物外,生物带中还存在杂草,其中最丰富的有藜草、苋菜、尾草、卷叶草、木贼草等。在可耕地上发生的杂草方面,实现生物带饲养的风险可以忽略不计。来自生物带的杂草扩散到邻近耕地的潜力有限。杂草从生物带向邻近耕地扩散的可能性未被证实。相反,由于其组成,生物带的植被有可能扩大动物的食物供应。因此,生物带有助于支持农业集约利用地区的生物多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Agriculture and Food
AIMS Agriculture and Food AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
3.70
自引率
0.00%
发文量
34
审稿时长
8 weeks
期刊介绍: AIMS Agriculture and Food covers a broad array of topics pertaining to agriculture and food, including, but not limited to:  Agricultural and food production and utilization  Food science and technology  Agricultural and food engineering  Food chemistry and biochemistry  Food materials  Physico-chemical, structural and functional properties of agricultural and food products  Agriculture and the environment  Biorefineries in agricultural and food systems  Food security and novel alternative food sources  Traceability and regional origin of agricultural and food products  Authentication of food and agricultural products  Food safety and food microbiology  Waste reduction in agriculture and food production and processing  Animal science, aquaculture, husbandry and veterinary medicine  Resources utilization and sustainability in food and agricultural production and processing  Horticulture and plant science  Agricultural economics.
期刊最新文献
Effect of harvesting age and drying condition on andrographolide content, antioxidant capacity, and antibacterial activity in Andrographis paniculata (Burm.f.) Nees Causal nexus between agricultural credit rationing and repayment performance: A two-stage Tobit regression Physicochemical characterization of sangorache natural colorant extracts (Amaranthus quitensis L.) prepared via spray- and freeze-drying Polyphasic identification of a Zygosaccharomyces rouxii isolated from grape juice concentrate and its control using thermal processing Simultaneous isoquercitin and gallic acid production of Aspergillus niger on Triphala byproduct under solid state fermentation in packed-bed bioreactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1