Application of nature inspired optimization algorithms in bioimpedance spectroscopy: simulation and experiment

IF 1.1 Q4 BIOPHYSICS AIMS Biophysics Pub Date : 2023-01-01 DOI:10.3934/biophy.2023010
A. Mallick, Atanu Mondal, Somnath Bhattacharjee, Arijit Roy
{"title":"Application of nature inspired optimization algorithms in bioimpedance spectroscopy: simulation and experiment","authors":"A. Mallick, Atanu Mondal, Somnath Bhattacharjee, Arijit Roy","doi":"10.3934/biophy.2023010","DOIUrl":null,"url":null,"abstract":"Accurate extraction of Cole parameters for applications in bioimpedance spectroscopy (BIS) is challenging. Precise estimation of Cole parameters from measured bioimpedance data is crucial, since the physiological state of any biological tissue or body is described in terms of Cole parameters. To extract Cole parameters from measured bioimpedance data, the conventional gradient-based non-linear least square (NLS) optimization algorithm is found to be significantly inaccurate. In this work, we have presented a robust methodology to establish an accurate process to estimate Cole parameters and relaxation time from measured BIS data. Six nature inspired algorithms, along with NLS are implemented and studied. Experiments are conducted to obtain BIS data and analysis of variation (ANOVA) is performed. The Cuckoo Search (CS) algorithm achieved a better fitment result and is also able to extract the Cole parameters most accurately among all the algorithms under consideration. The ANOVA result shows that CS algorithm achieved a higher confidence rate. In addition, the CS algorithm requires less sample size compared to other algorithms for distinguishing the change in physical properties of a biological body.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2023010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate extraction of Cole parameters for applications in bioimpedance spectroscopy (BIS) is challenging. Precise estimation of Cole parameters from measured bioimpedance data is crucial, since the physiological state of any biological tissue or body is described in terms of Cole parameters. To extract Cole parameters from measured bioimpedance data, the conventional gradient-based non-linear least square (NLS) optimization algorithm is found to be significantly inaccurate. In this work, we have presented a robust methodology to establish an accurate process to estimate Cole parameters and relaxation time from measured BIS data. Six nature inspired algorithms, along with NLS are implemented and studied. Experiments are conducted to obtain BIS data and analysis of variation (ANOVA) is performed. The Cuckoo Search (CS) algorithm achieved a better fitment result and is also able to extract the Cole parameters most accurately among all the algorithms under consideration. The ANOVA result shows that CS algorithm achieved a higher confidence rate. In addition, the CS algorithm requires less sample size compared to other algorithms for distinguishing the change in physical properties of a biological body.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然启发优化算法在生物阻抗谱中的应用:模拟与实验
生物阻抗谱(BIS)中Cole参数的准确提取具有挑战性。从测量的生物阻抗数据精确估计Cole参数是至关重要的,因为任何生物组织或身体的生理状态都是用Cole参数来描述的。为了从测量的生物阻抗数据中提取Cole参数,传统的基于梯度的非线性最小二乘(NLS)优化算法存在显著的不准确性。在这项工作中,我们提出了一个强大的方法来建立一个准确的过程来估计Cole参数和松弛时间从测量的BIS数据。六种自然启发算法,以及NLS实现和研究。进行实验以获得BIS数据,并进行变异分析(ANOVA)。布谷鸟搜索(Cuckoo Search, CS)算法的拟合效果较好,也是所考虑的算法中提取Cole参数最准确的算法。方差分析结果表明,CS算法取得了较高的置信率。此外,与其他算法相比,CS算法需要更少的样本量来区分生物体物理性质的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Biophysics
AIMS Biophysics BIOPHYSICS-
CiteScore
2.40
自引率
20.00%
发文量
16
审稿时长
8 weeks
期刊介绍: AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology
期刊最新文献
Endoplasmic reticulum localization of phosphoinositide specific phospholipase C enzymes in U73122 cultured human osteoblasts Identification of potential SARS-CoV-2 papain-like protease inhibitors with the ability to interact with the catalytic triad Predicting factors and top gene identification for survival data of breast cancer A review of molecular biology detection methods for human adenovirus Natural bond orbital analysis of dication magnesium complexes [Mg(H2O)6]2+ and [[Mg(H2O)6](H2O)n]2+; n=1-4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1