Normalized Adaptive Hybrid Control Algorithms for Helicopter Vibration with Variable Rotor Speed

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of the American Helicopter Society Pub Date : 2021-01-01 DOI:10.4050/jahs.67.022008
K. Lang, P. Xia, E. Smith, L. Shang
{"title":"Normalized Adaptive Hybrid Control Algorithms for Helicopter Vibration with Variable Rotor Speed","authors":"K. Lang, P. Xia, E. Smith, L. Shang","doi":"10.4050/jahs.67.022008","DOIUrl":null,"url":null,"abstract":"Variable rotor speed technology implemented in a helicopter can improve the flight performance, reduce the required power, and increase the flight speed. However, variable rotor speed changes the frequencies of rotor vibratory loads and may produce helicopter fuselage resonance under the excitation of the rotor vibratory loads. Active vibration control (AVC) has been effectively used in vibration reduction of helicopter fuselages. However, the frequency domain control algorithms that are currently used have poor adaptability in controlling vibration with variable frequencies (i.e., during time varying rotor speeds). In order to effectively improve control convergence, adaptability, and effectiveness, the normalized adaptive hybrid control algorithms containing both the normalized adaptive harmonic control algorithm and the normalized frequency tracking algorithm have been presented in this paper. Simulations of AVC with variable frequencies on a dynamically similar frame structure of a helicopter fuselage driven by piezoelectric stack actuators installed on the gearbox support struts show that the normalized adaptive hybrid control algorithms can accurately track the changes in rotor load frequencies and can be effectively used in the AVC of a helicopter with variable rotor speed.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.022008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Variable rotor speed technology implemented in a helicopter can improve the flight performance, reduce the required power, and increase the flight speed. However, variable rotor speed changes the frequencies of rotor vibratory loads and may produce helicopter fuselage resonance under the excitation of the rotor vibratory loads. Active vibration control (AVC) has been effectively used in vibration reduction of helicopter fuselages. However, the frequency domain control algorithms that are currently used have poor adaptability in controlling vibration with variable frequencies (i.e., during time varying rotor speeds). In order to effectively improve control convergence, adaptability, and effectiveness, the normalized adaptive hybrid control algorithms containing both the normalized adaptive harmonic control algorithm and the normalized frequency tracking algorithm have been presented in this paper. Simulations of AVC with variable frequencies on a dynamically similar frame structure of a helicopter fuselage driven by piezoelectric stack actuators installed on the gearbox support struts show that the normalized adaptive hybrid control algorithms can accurately track the changes in rotor load frequencies and can be effectively used in the AVC of a helicopter with variable rotor speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直升机变旋翼速度振动归一化自适应混合控制算法
在直升机上采用可变旋翼速度技术可以改善飞行性能,降低所需功率,提高飞行速度。然而,变转速会改变旋翼振动载荷的频率,在旋翼振动载荷的激励下可能产生直升机机身共振。主动振动控制(AVC)在直升机机身减振中得到了有效的应用。然而,目前使用的频域控制算法对变频(即转子转速随时间变化)振动的控制适应性较差。为了有效提高控制的收敛性、适应性和有效性,本文提出了包含归一化自适应谐波控制算法和归一化频率跟踪算法的归一化自适应混合控制算法。通过在齿轮箱支撑杆上安装压电堆致动器驱动的直升机动态相似框架结构上的变频AVC仿真结果表明,归一化自适应混合控制算法能够准确跟踪旋翼载荷频率的变化,能够有效地应用于直升机变旋翼速度的AVC控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
期刊最新文献
Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission Analytical Model Development for Rotors Hovering Above Heaving Surfaces Deep Learning Based Obstacle Awareness from Airborne Optical Sensors Observers for Robust Rotor State Estimation Performance and Loads of a Wing-Offset Compound Helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1