A Dimensionality Reduction Approach in Helicopter Hover Performance Flight Testing

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of the American Helicopter Society Pub Date : 2022-01-01 DOI:10.4050/jahs.67.032010
I. Arush, M. Pavel, M. Mulder
{"title":"A Dimensionality Reduction Approach in Helicopter Hover Performance Flight Testing","authors":"I. Arush, M. Pavel, M. Mulder","doi":"10.4050/jahs.67.032010","DOIUrl":null,"url":null,"abstract":"The power required to hover a helicopter is fundamental to any new or modified performance flight-testing effort. The conventional method of relating two nondimensional variables (coefficients of power and weight) is overly simplified and neglects compressibility effects in the power required to hover under a wide range of gross weights and atmospheric conditions. An alternative flight-test method for assessing hover performance while addressing this deficiency of the conventional method is proposed. The method uses an original list of 15 corrected variables derived from fundamental dimensional analysis, which is further reduced by means of dimensionality reduction to include only the most essential and effective predictors. The method is demonstrated using data of a Bell Jet-Ranger and shows that at the 95% confidence level; the averaged prediction error is only 0.9 hp (0.3% of the maximum continuous power). Using the same data, the conventional method yields a much larger averaged prediction error of 1.7 hp.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.032010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

The power required to hover a helicopter is fundamental to any new or modified performance flight-testing effort. The conventional method of relating two nondimensional variables (coefficients of power and weight) is overly simplified and neglects compressibility effects in the power required to hover under a wide range of gross weights and atmospheric conditions. An alternative flight-test method for assessing hover performance while addressing this deficiency of the conventional method is proposed. The method uses an original list of 15 corrected variables derived from fundamental dimensional analysis, which is further reduced by means of dimensionality reduction to include only the most essential and effective predictors. The method is demonstrated using data of a Bell Jet-Ranger and shows that at the 95% confidence level; the averaged prediction error is only 0.9 hp (0.3% of the maximum continuous power). Using the same data, the conventional method yields a much larger averaged prediction error of 1.7 hp.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直升机悬停性能飞行试验中的降维方法
直升机悬停所需的动力是任何新的或改进性能飞行测试工作的基础。将两个非量纲变量(功率和重量系数)联系起来的传统方法过于简化,并且忽略了在大范围的总重量和大气条件下悬停所需功率的可压缩性效应。提出了一种评估悬停性能的替代飞行试验方法,同时解决了传统方法的这一缺陷。该方法使用从基本量纲分析中得到的15个修正变量的原始列表,通过降维进一步减少,仅包括最基本和最有效的预测因子。该方法使用贝尔喷气游侠的数据进行了验证,并显示在95%的置信水平下;平均预测误差仅为0.9 HP(最大连续功率的0.3%)。使用相同的数据,传统方法产生的平均预测误差要大得多,为1.7马力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
期刊最新文献
Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission Analytical Model Development for Rotors Hovering Above Heaving Surfaces Deep Learning Based Obstacle Awareness from Airborne Optical Sensors Observers for Robust Rotor State Estimation Performance and Loads of a Wing-Offset Compound Helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1