Further Development and Piloted Simulation Evaluation of the Break Turn ADS-33 Mission Task Element

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of the American Helicopter Society Pub Date : 2022-01-01 DOI:10.4050/jahs.67.042003
H. Xin, J. Horn, Roy Brewer, D. Klyde, Cody E. Fegely, Paul Ruckel, Frank Conway, Sean P. Pitoniak, William C. Fell, J. Rigsby, R. Mulato, P. Schulze, Carl Ott, C. Blanken
{"title":"Further Development and Piloted Simulation Evaluation of the Break Turn ADS-33 Mission Task Element","authors":"H. Xin, J. Horn, Roy Brewer, D. Klyde, Cody E. Fegely, Paul Ruckel, Frank Conway, Sean P. Pitoniak, William C. Fell, J. Rigsby, R. Mulato, P. Schulze, Carl Ott, C. Blanken","doi":"10.4050/jahs.67.042003","DOIUrl":null,"url":null,"abstract":"Cofunded by the U.S. Army and industry, a Sikorsky-led team that features industry and academia developed and evaluated a set of mission task elements (MTE) to address rotorcraft high-speed handling qualities. The MTEs were designed to meet different levels of precision and aggressiveness. The Break Turn MTE was defined for nonprecision, aggressive applications. The MTE objectives, descriptions, and performance criteria were developed via piloted simulation sessions at each team's simulator, each featuring a unique high-speed platform including a coaxial compound helicopter, two tiltrotors, and a generic winged compound helicopter. Formal evaluations were conducted by U.S. Army test pilots. Baseline control laws were varied to achieve different handling qualities levels. Quantitative measures based on task performance and qualitative measures based on pilot ratings, comments, and questionnaires were used to assess MTE effectiveness. It was demonstrated that the Break Turn MTE provided an effective means to discern nonprecision, aggressive handling qualities in high-speed flight.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.042003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 4

Abstract

Cofunded by the U.S. Army and industry, a Sikorsky-led team that features industry and academia developed and evaluated a set of mission task elements (MTE) to address rotorcraft high-speed handling qualities. The MTEs were designed to meet different levels of precision and aggressiveness. The Break Turn MTE was defined for nonprecision, aggressive applications. The MTE objectives, descriptions, and performance criteria were developed via piloted simulation sessions at each team's simulator, each featuring a unique high-speed platform including a coaxial compound helicopter, two tiltrotors, and a generic winged compound helicopter. Formal evaluations were conducted by U.S. Army test pilots. Baseline control laws were varied to achieve different handling qualities levels. Quantitative measures based on task performance and qualitative measures based on pilot ratings, comments, and questionnaires were used to assess MTE effectiveness. It was demonstrated that the Break Turn MTE provided an effective means to discern nonprecision, aggressive handling qualities in high-speed flight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
破弯ADS-33任务单元的进一步开发与试验仿真评估
由美国陆军和工业界共同资助,西科斯基公司领导的一个以工业界和学术界为特色的团队开发并评估了一套任务要素(MTE),以解决旋翼飞机的高速处理质量问题。mte的设计是为了满足不同程度的精度和侵略性。断转MTE是为非精度、侵略性应用而定义的。MTE的目标、描述和性能标准是通过在每个团队的模拟器上进行驾驶模拟会议制定的,每个模拟器都有一个独特的高速平台,包括一架同轴复合直升机、两个倾转旋翼和一架通用翼复合直升机。美国陆军试飞员进行了正式评估。基线控制律不同,以达到不同的处理质量水平。基于任务表现的定量测量和基于试点评分、评论和问卷的定性测量被用来评估MTE的有效性。结果表明,断转MTE为高速飞行中非精密、攻击性操纵特性的识别提供了有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
期刊最新文献
Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission Analytical Model Development for Rotors Hovering Above Heaving Surfaces Deep Learning Based Obstacle Awareness from Airborne Optical Sensors Observers for Robust Rotor State Estimation Performance and Loads of a Wing-Offset Compound Helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1