Data-Driven Analysis of Cycle-to-Cycle Variations, Scatter, and Furcation in the UH-60A Wind Tunnel Rotor Airloads Measurements

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of the American Helicopter Society Pub Date : 2022-01-01 DOI:10.4050/jahs.67.042011
M. Ramasamy, R. Jain, T. Norman
{"title":"Data-Driven Analysis of Cycle-to-Cycle Variations, Scatter, and Furcation in the UH-60A Wind Tunnel Rotor Airloads Measurements","authors":"M. Ramasamy, R. Jain, T. Norman","doi":"10.4050/jahs.67.042011","DOIUrl":null,"url":null,"abstract":"A data-driven clustering algorithm based on proper orthogonal decomposition was applied to assess the scatter found in the UH-60A wind tunnel airloads measurements. Upon verifying the capability of the algorithm, pushrod loads, blade surface pressures, sectional loads, and torsional moments were analyzed. Spatial eigenmodes resulting from the decomposition provided the optimal basis; projection of the individual cycles onto the high singular value modes allowed visualizing the statistical distribution of data over the entire azimuth. While not all cases showed furcation in the data, the bimodal distribution was found in the high-thrust cases, where statistically normal distribution is generally assumed. Consequent clustering of the measured cycles produced an excellent correlation among clusters found in the pushrod loads, blade surface pressure, and torsional moment that suggests a common source for furcation in the data. The cycles assigned to one group repeatedly showed distinguishable variations from the other group in terms of the presence/absence of a dynamic stall vortex, azimuthal occurrence of the stall, chordwise location of separation, reattachment, and so on. When one of the clusters is smaller in size compared to the other, the conventional phase average obscured all the intricate features even when the loads are substantially higher than the larger cluster. In general, clustering the dataset when warranted showed not only higher peak loads but also lower variance for both the clusters across the entire azimuth compared to the conventional simple phase-average results. Computational simulations were conducted using CREATETM-AV Helios towards understanding the underlying flow field. Misinterpreted earlier as under-/overpredictive when compared with the simple phase-average data, Helios results consistently showed significantly improved correlation with one of the two clusters. Combining the clustered results and the flow visualization provided by Helios, aperiodicity in the spatial location and the strength of both the trim tab vortices and tip vortices have been hypothesized as potential sources of furcation.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"76 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.042011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

A data-driven clustering algorithm based on proper orthogonal decomposition was applied to assess the scatter found in the UH-60A wind tunnel airloads measurements. Upon verifying the capability of the algorithm, pushrod loads, blade surface pressures, sectional loads, and torsional moments were analyzed. Spatial eigenmodes resulting from the decomposition provided the optimal basis; projection of the individual cycles onto the high singular value modes allowed visualizing the statistical distribution of data over the entire azimuth. While not all cases showed furcation in the data, the bimodal distribution was found in the high-thrust cases, where statistically normal distribution is generally assumed. Consequent clustering of the measured cycles produced an excellent correlation among clusters found in the pushrod loads, blade surface pressure, and torsional moment that suggests a common source for furcation in the data. The cycles assigned to one group repeatedly showed distinguishable variations from the other group in terms of the presence/absence of a dynamic stall vortex, azimuthal occurrence of the stall, chordwise location of separation, reattachment, and so on. When one of the clusters is smaller in size compared to the other, the conventional phase average obscured all the intricate features even when the loads are substantially higher than the larger cluster. In general, clustering the dataset when warranted showed not only higher peak loads but also lower variance for both the clusters across the entire azimuth compared to the conventional simple phase-average results. Computational simulations were conducted using CREATETM-AV Helios towards understanding the underlying flow field. Misinterpreted earlier as under-/overpredictive when compared with the simple phase-average data, Helios results consistently showed significantly improved correlation with one of the two clusters. Combining the clustered results and the flow visualization provided by Helios, aperiodicity in the spatial location and the strength of both the trim tab vortices and tip vortices have been hypothesized as potential sources of furcation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UH-60A风洞旋翼载荷测量中周期间变化、分散和分叉的数据驱动分析
采用一种基于适当正交分解的数据驱动聚类算法,对UH-60A风洞气动载荷测量中发现的散射进行了评估。在验证算法的能力后,分析了推杆载荷、叶片表面压力、截面载荷和扭矩。由分解得到的空间特征模态为优化提供了依据;将单个周期投影到高奇异值模式上,可以可视化整个方位角上数据的统计分布。虽然并非所有情况下的数据都显示分叉,但在大推力情况下发现双峰分布,通常假设统计上的正态分布。随后对测量周期进行聚类,在推杆载荷、叶片表面压力和扭转力矩中发现的聚类之间产生了良好的相关性,这表明数据中存在一个共同的分岔源。分配给一组的周期反复显示出与另一组在动态失速漩涡的存在/不存在、失速发生的方位、弦向分离位置、重新附着等方面的明显差异。当其中一个簇比另一个簇小时,即使负载比大簇高得多,传统的相位平均也会掩盖所有复杂的特征。一般来说,与传统的简单相位平均结果相比,在保证时对数据集进行聚类不仅可以显示更高的峰值负载,还可以显示整个方位角上两个聚类的方差更低。利用CREATETM-AV Helios进行了计算模拟,以了解底层流场。与简单的相位平均数据相比,之前被误解为预测不足或预测过度,赫利俄斯的结果一致显示出与两个星团之一的相关性显著提高。结合聚类结果和Helios提供的流动可视化,假设空间位置的非周期性以及翼缘旋涡和叶顶旋涡的强度都是分叉的潜在来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
期刊最新文献
Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission Analytical Model Development for Rotors Hovering Above Heaving Surfaces Deep Learning Based Obstacle Awareness from Airborne Optical Sensors Observers for Robust Rotor State Estimation Performance and Loads of a Wing-Offset Compound Helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1