{"title":"A Novel Modeling Strategy for the Dynamical Analysis of Coupled Coaxial Rotors/Auxiliary Propeller/Drive Train System","authors":"Xiao Wang, Laishou Song, P. Xia","doi":"10.4050/jahs.68.012003","DOIUrl":null,"url":null,"abstract":"The coupled coaxial rotors/auxiliary propeller/drive train system of a compound helicopter may exhibit torsional instability. A novel modeling strategy based on the transfer matrix method is developed and used to analyze the coupled torsional system. In contrast to the finite element method, the proposed modeling strategy offers more elegant formulations of the dynamic equations for the rigid-flexible multibody system. The highlight includes the overall transfer equation that can be directly obtained according to the topology figure of the system by introducing a virtual branch element to decouple the tree topology system as a combination of the chain systems. Besides, another virtual connection element is introduced to deal with the state vector dimension mismatch problem, improving the computational efficiency by further reducing the scale of the overall transfer matrix. A new transfer matrix of a rotor blade for lead–lag motion is derived. The influences of different flight conditions on torsional vibration are highlighted. And several suggestions on torsional vibration design are concluded.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.012003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The coupled coaxial rotors/auxiliary propeller/drive train system of a compound helicopter may exhibit torsional instability. A novel modeling strategy based on the transfer matrix method is developed and used to analyze the coupled torsional system. In contrast to the finite element method, the proposed modeling strategy offers more elegant formulations of the dynamic equations for the rigid-flexible multibody system. The highlight includes the overall transfer equation that can be directly obtained according to the topology figure of the system by introducing a virtual branch element to decouple the tree topology system as a combination of the chain systems. Besides, another virtual connection element is introduced to deal with the state vector dimension mismatch problem, improving the computational efficiency by further reducing the scale of the overall transfer matrix. A new transfer matrix of a rotor blade for lead–lag motion is derived. The influences of different flight conditions on torsional vibration are highlighted. And several suggestions on torsional vibration design are concluded.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine