{"title":"Analysis of Large-Scale Hybrid Aerospace Spur Gear Drivetrains","authors":"Sean Gauntt, S. McIntyre, R. Campbell","doi":"10.4050/jahs.68.012004","DOIUrl":null,"url":null,"abstract":"The hybrid gear concept, which combines a metallic outer rim of gear teeth with a composite web, has shown potential to reduce the weight of small-scale spur gears without negatively affecting vibration performance for low- and medium-speed applications. In this paper, the hybrid gear design and tooth microgeometry optimization technique that had been applied to small-scale spur gears was adapted for application to spur gears of aerospace-relevant scale, speed, and load. A single reduction drivetrain model was developed featuring large-scale hybrid spur gears, which was used to determine optimal tooth microgeometry modifications that minimized peak-to-peak transmission error. Static and dynamic transmission error analyses were then performed using the optimal microgeometries. Results were compared to those predicted for a similarly-optimized all-steel drivetrain. The application of optimal tooth microgeometries to large-scale hybrid gears led to a more significant decrease in a peak-to-peak transmission error than was observed for the small-scale gears. Similar to results for small-scale hybrid gears, the drivetrains featuring large-scale hybrid gears predicted similar dynamic transmission errors to their all-steel counterparts at low and medium speeds, while significantly different transmission errors were predicted at high speeds.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.012004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The hybrid gear concept, which combines a metallic outer rim of gear teeth with a composite web, has shown potential to reduce the weight of small-scale spur gears without negatively affecting vibration performance for low- and medium-speed applications. In this paper, the hybrid gear design and tooth microgeometry optimization technique that had been applied to small-scale spur gears was adapted for application to spur gears of aerospace-relevant scale, speed, and load. A single reduction drivetrain model was developed featuring large-scale hybrid spur gears, which was used to determine optimal tooth microgeometry modifications that minimized peak-to-peak transmission error. Static and dynamic transmission error analyses were then performed using the optimal microgeometries. Results were compared to those predicted for a similarly-optimized all-steel drivetrain. The application of optimal tooth microgeometries to large-scale hybrid gears led to a more significant decrease in a peak-to-peak transmission error than was observed for the small-scale gears. Similar to results for small-scale hybrid gears, the drivetrains featuring large-scale hybrid gears predicted similar dynamic transmission errors to their all-steel counterparts at low and medium speeds, while significantly different transmission errors were predicted at high speeds.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine