Geometrically Exact Beam-Based Aeroelastic Modeling and Solution of Composite Rotor Blades in Forward Flight

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-01-01 DOI:10.4050/jahs.68.022011
L. Shang, P. Xia, D. Hodges, C. Lin
{"title":"Geometrically Exact Beam-Based Aeroelastic Modeling and Solution of Composite Rotor Blades in Forward Flight","authors":"L. Shang, P. Xia, D. Hodges, C. Lin","doi":"10.4050/jahs.68.022011","DOIUrl":null,"url":null,"abstract":"In this paper, the geometrically exact beam model and aeroelastic solution methods for composite rotor blades in forward flight by the latest variational asymptotic beam sectional analysis (VABS) have been employed. The geometrically exact beam equations of motion in the mixed variational form and the latest VABS are used to deal with one-dimensional blade analysis and the structural property of blade cross section, respectively. The methods can be used for the aeroelastic solution of composite rotor blades with arbitrary cross-sectional shape and material distribution, large deflections and significant nonclassical effects such as cross-sectional warping, transverse shear deformation, and elastic couplings caused by anisotropic material properties. The Peters–He finite state dynamic inflow model and the Peters finite state airloads theory are used to calculate the induced velocity and blade airloads, respectively. An auto-pilot trim scheme is used for calculating the blade pitch controls to meet the trim requirements. The convergence issue encountered when solving the geometrically exact, mixed variational aeroelastic equations in time domain has been successfully addressed. The values of the empirical parameters in the auto-pilot trim scheme for the presented aeroelastic model have been properly selected. The accuracy of the presented aeroelastic modeling and solution methods has been verified against the SA349/2 flight-test data. The influence of transverse shear deformation on the aeroelastic response of composite rotor blades was also investigated, indicating that this effect has a nonnegligible influence on the aeroelastic response of the five different kinds of elastically coupled hingeless composite rotors investigated in this paper.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.022011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the geometrically exact beam model and aeroelastic solution methods for composite rotor blades in forward flight by the latest variational asymptotic beam sectional analysis (VABS) have been employed. The geometrically exact beam equations of motion in the mixed variational form and the latest VABS are used to deal with one-dimensional blade analysis and the structural property of blade cross section, respectively. The methods can be used for the aeroelastic solution of composite rotor blades with arbitrary cross-sectional shape and material distribution, large deflections and significant nonclassical effects such as cross-sectional warping, transverse shear deformation, and elastic couplings caused by anisotropic material properties. The Peters–He finite state dynamic inflow model and the Peters finite state airloads theory are used to calculate the induced velocity and blade airloads, respectively. An auto-pilot trim scheme is used for calculating the blade pitch controls to meet the trim requirements. The convergence issue encountered when solving the geometrically exact, mixed variational aeroelastic equations in time domain has been successfully addressed. The values of the empirical parameters in the auto-pilot trim scheme for the presented aeroelastic model have been properly selected. The accuracy of the presented aeroelastic modeling and solution methods has been verified against the SA349/2 flight-test data. The influence of transverse shear deformation on the aeroelastic response of composite rotor blades was also investigated, indicating that this effect has a nonnegligible influence on the aeroelastic response of the five different kinds of elastically coupled hingeless composite rotors investigated in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于几何精确梁的复合材料桨叶前飞气动弹性建模与求解
本文采用最新的变分渐近梁截面分析(VABS)建立了复合材料动叶前飞的几何精确梁模型和气动弹性求解方法。采用混合变分形式的几何精确梁运动方程和最新的VABS分别处理叶片的一维分析和叶片截面的结构特性。该方法可用于具有任意横截面形状和材料分布、大挠度和由材料各向异性引起的截面翘曲、横向剪切变形和弹性耦合等显著非经典效应的复合材料动叶气动弹性解。采用Peters - he有限状态动态入流模型和Peters有限状态气动载荷理论分别计算了诱导速度和叶片气动载荷。一个自动驾驶修剪方案用于计算桨距控制,以满足修剪要求。成功地解决了求解几何精确的混合变分气动弹性方程时遇到的收敛问题。所提出的气动弹性模型的自动驾驶配平方案中经验参数的取值选择合理。通过SA349/2飞行试验数据,验证了气动弹性建模和求解方法的准确性。研究了横向剪切变形对复合材料动叶气动弹性响应的影响,表明横向剪切变形对本文研究的五种不同类型的弹性耦合无铰复合材料动叶气动弹性响应具有不可忽略的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1