{"title":"Effects of Optimal Tooth Microgeometry Modifications on Static and Dynamic Transmission Errors of Hybrid Spur Gear Drivetrains","authors":"Sean Gauntt, S. McIntyre, R. Campbell","doi":"10.4050/jahs.68.042006","DOIUrl":null,"url":null,"abstract":"A hybrid gear concept that combines a metallic outer rim of gear teeth with a composite web to reduce drivetrain weight was evaluated for impact of tooth microgeometry modifications on transmission error. Control of transmission error through tooth microgeometry modification is important for control of noise and vibrations generated by a drivetrain. The added flexibility of hybrid gears over steel gears brings to question the performance of hybrid over conventional gears relative to their dynamic transmission error and resulting noise levels. Previously developed drivetrain models featuring hybrid spur gears were used to determine optimal tooth microgeometry modifications that minimized peak-to-peak transmission error. Static and dynamic transmission errors were then calculated using the optimal microgeometries and compared to results for a similarly optimized all-steel drivetrain. From the results, it appears that the use of hybrid gears will not negatively affect vibration performance for low- and medium-speed applications, as hybrid gear models predicted similar transmission errors to their all-steel counterparts. At higher speeds, drivetrains featuring hybrid gears were predicted to have significantly different transmission errors, but whether this difference was an improvement or detriment is design and speed-dependent. Therefore, careful design is necessary for high-speed hybrid gears.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.042006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A hybrid gear concept that combines a metallic outer rim of gear teeth with a composite web to reduce drivetrain weight was evaluated for impact of tooth microgeometry modifications on transmission error. Control of transmission error through tooth microgeometry modification is important for control of noise and vibrations generated by a drivetrain. The added flexibility of hybrid gears over steel gears brings to question the performance of hybrid over conventional gears relative to their dynamic transmission error and resulting noise levels. Previously developed drivetrain models featuring hybrid spur gears were used to determine optimal tooth microgeometry modifications that minimized peak-to-peak transmission error. Static and dynamic transmission errors were then calculated using the optimal microgeometries and compared to results for a similarly optimized all-steel drivetrain. From the results, it appears that the use of hybrid gears will not negatively affect vibration performance for low- and medium-speed applications, as hybrid gear models predicted similar transmission errors to their all-steel counterparts. At higher speeds, drivetrains featuring hybrid gears were predicted to have significantly different transmission errors, but whether this difference was an improvement or detriment is design and speed-dependent. Therefore, careful design is necessary for high-speed hybrid gears.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.