Adaptive online auto-tuning using particle swarm optimized PI controller with time-variant approach for high accuracy and speed in dual active bridge converter

S. Ab-Ghani, H. Daniyal, A. Z. Ahmad, N. Jaalam, N. M. Saad, N. H. Ramlan, N. Bahari
{"title":"Adaptive online auto-tuning using particle swarm optimized PI controller with time-variant approach for high accuracy and speed in dual active bridge converter","authors":"S. Ab-Ghani, H. Daniyal, A. Z. Ahmad, N. Jaalam, N. M. Saad, N. H. Ramlan, N. Bahari","doi":"10.3934/electreng.2023009","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Electric vehicles (EVs) are an emerging technology that contribute to reducing air pollution. This paper presents the development of a 200 kW DC charger for the vehicle to grid (V2G) application. The bidirectional dual active bridge (DAB) converter was the preferred fit for a high-power DC-DC conversion due its attractive features. A particle swarm optimization (PSO) algorithm was used to online auto-tune the optimal <italic>K<sub>P</sub></italic> and <italic>K<sub>I</sub></italic> value with minimize error voltage. Then, by concerning the controller with fixed gains have limitation in response during dynamic change, the PSO was improved to allow re-tuning and update the new <italic>K<sub>P</sub></italic> and <italic>K<sub>I</sub></italic> upon step changes or disturbances through a time-variant approach. The proposed controller, online auto-tuned PI using PSO with re-tuning (OPSO-PI-RT) and one-time (OPSO-PI-OT) execution were compared under desired output voltage step changes and load step changes in terms of steady-state error and dynamic performance. The OPSO-PI-RT method was a superior controller with 98.16% accuracy and faster controller with 85.28 s<sup>-1</sup> average speed compared to OPSO-PI-OT using controller hardware-in-the-loop (CHIL) approach.</p> </abstract>","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/electreng.2023009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Electric vehicles (EVs) are an emerging technology that contribute to reducing air pollution. This paper presents the development of a 200 kW DC charger for the vehicle to grid (V2G) application. The bidirectional dual active bridge (DAB) converter was the preferred fit for a high-power DC-DC conversion due its attractive features. A particle swarm optimization (PSO) algorithm was used to online auto-tune the optimal KP and KI value with minimize error voltage. Then, by concerning the controller with fixed gains have limitation in response during dynamic change, the PSO was improved to allow re-tuning and update the new KP and KI upon step changes or disturbances through a time-variant approach. The proposed controller, online auto-tuned PI using PSO with re-tuning (OPSO-PI-RT) and one-time (OPSO-PI-OT) execution were compared under desired output voltage step changes and load step changes in terms of steady-state error and dynamic performance. The OPSO-PI-RT method was a superior controller with 98.16% accuracy and faster controller with 85.28 s-1 average speed compared to OPSO-PI-OT using controller hardware-in-the-loop (CHIL) approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双有源桥式变换器采用粒子群优化PI控制器时变自适应在线自整定,提高了精度和速度
电动汽车(ev)是一项有助于减少空气污染的新兴技术。本文介绍了一种用于车辆到电网(V2G)应用的200kw直流充电器的研制。双向双有源桥式(DAB)变换器由于其诱人的特性而成为大功率DC-DC转换的首选。采用粒子群优化(PSO)算法在线自动调整误差电压最小的最优KP和KI值。然后,通过考虑具有固定增益的控制器在动态变化期间的响应限制,改进了粒子群,使其能够在阶跃变化或干扰时通过时变方法重新调整和更新新的KP和KI。在期望的输出电压阶跃变化和负载阶跃变化下,比较了所提出的控制器、使用PSO带重新调谐的在线自调谐PI (OPSO-PI-RT)和一次性(OPSO-PI-OT)在稳态误差和动态性能方面的变化。与采用控制器硬件在环(CHIL)方法的OPSO-PI-OT相比,OPSO-PI-RT方法的控制器精度为98.16%,平均速度为85.28 s-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Electronics and Electrical Engineering
AIMS Electronics and Electrical Engineering Engineering-Control and Systems Engineering
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊最新文献
Miniature glass-metal coaxial waveguide reactors for microwave-assisted liquid heating Adaptive PID sliding mode control based on new Quasi-sliding mode and radial basis function neural network for Omni-directional mobile robot A novel mine blast optimization algorithm (MBOA) based MPPT controlling for grid-PV systems Adaptive online auto-tuning using particle swarm optimized PI controller with time-variant approach for high accuracy and speed in dual active bridge converter Analysis of a low-profile, dual band patch antenna for wireless applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1