Lemuel Clark P. Velasco, Mary Jane F. Burden, Marie Joy Satiniaman, Rachelle Bea C. Uy, Luchin Valrian Pueblos, Reynald Gimena
{"title":"Preliminary assessment of solid waste in Philippine Fabrication Laboratories","authors":"Lemuel Clark P. Velasco, Mary Jane F. Burden, Marie Joy Satiniaman, Rachelle Bea C. Uy, Luchin Valrian Pueblos, Reynald Gimena","doi":"10.3934/environsci.2021017","DOIUrl":null,"url":null,"abstract":"Solid waste management is seen as a response to the increase in waste generation due to the rising number of industrial facilities. This includes digital manufacturing facilities such as Fabrication Laboratories (FAB LAB) which acts as innovation centers that generates prototypes using a common set of digital fabrication equipment. Previous studies have tackled with the environmental impacts of FAB LABs in a macro-level scale; however, there has been a lack of research specifically assessing the solid waste of laboratories, more so on Philippine FAB LABs. A baseline assessment study on FAB LABs of the Philippines could be applicable in future implementations of solid waste management systems through the crafting of institutional policies and guidelines for environmental sustainability. Using data gathered from 11 respondent FAB LABs, this study quantified percentage compositions of the waste according to waste type as well as the relative waste generated by each respondent FAB LAB. Machine availability was seen as a factor in waste generation resulting in the high generation of wood and plastic waste. Moreover, it was observed that earlier established laboratories generally had more active makers than recently established ones, hence the older FAB LABs statistically produced more waste. Approximately 53% of the overall waste produced was considered recyclable by Philippine standards but the actual recyclability of the waste was still undetermined due to the ambiguous criteria for recyclables and the lack of feedback data from recycling facilities. The initial findings suggest that an implementation of continuous waste monitoring, sufficient in-laboratory protocols, and coordination between FAB LABs and recycling facilities could improve actual waste recyclability and—by extension—the environmental sustainability of Philippine FAB LABs.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/environsci.2021017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Solid waste management is seen as a response to the increase in waste generation due to the rising number of industrial facilities. This includes digital manufacturing facilities such as Fabrication Laboratories (FAB LAB) which acts as innovation centers that generates prototypes using a common set of digital fabrication equipment. Previous studies have tackled with the environmental impacts of FAB LABs in a macro-level scale; however, there has been a lack of research specifically assessing the solid waste of laboratories, more so on Philippine FAB LABs. A baseline assessment study on FAB LABs of the Philippines could be applicable in future implementations of solid waste management systems through the crafting of institutional policies and guidelines for environmental sustainability. Using data gathered from 11 respondent FAB LABs, this study quantified percentage compositions of the waste according to waste type as well as the relative waste generated by each respondent FAB LAB. Machine availability was seen as a factor in waste generation resulting in the high generation of wood and plastic waste. Moreover, it was observed that earlier established laboratories generally had more active makers than recently established ones, hence the older FAB LABs statistically produced more waste. Approximately 53% of the overall waste produced was considered recyclable by Philippine standards but the actual recyclability of the waste was still undetermined due to the ambiguous criteria for recyclables and the lack of feedback data from recycling facilities. The initial findings suggest that an implementation of continuous waste monitoring, sufficient in-laboratory protocols, and coordination between FAB LABs and recycling facilities could improve actual waste recyclability and—by extension—the environmental sustainability of Philippine FAB LABs.