Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Few-Layer Cu-ZnIn2S4

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2018-11-26 DOI:10.1002/adfm.201807013
Pengfei Wang, Zhurui Shen, Yuguo Xia, Haitao Wang, Lirong Zheng, Wei Xi, Sihui Zhan
{"title":"Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Few-Layer Cu-ZnIn2S4","authors":"Pengfei Wang,&nbsp;Zhurui Shen,&nbsp;Yuguo Xia,&nbsp;Haitao Wang,&nbsp;Lirong Zheng,&nbsp;Wei Xi,&nbsp;Sihui Zhan","doi":"10.1002/adfm.201807013","DOIUrl":null,"url":null,"abstract":"<p>Herein, an example of Cu-doped few-layer ZnIn<sub>2</sub>S<sub>4</sub> nanosheets is used to reveal the origin of optimum and excess doping for photocatalysts at atomic level. Results show that the metal-S<sub>4</sub> coordination maintains well with 0.5 wt% Cu substituted Zn atoms in the lattice. The introduced Cu atoms bring electronic acceptor states close to the valence band (VB) maximum and thus ensures higher charge density and efficient carrier transport, resulting in an optimum hydrogen evolution rate of 26.2 mmol h<sup>−1</sup> g<sup>−1</sup> and an apparent quantum efficiency of 4.76% at 420 nm. However, a distorted atomic structure and largely upshift of VB maximum with Cu-S<sub>3.6</sub> coordination are found with excess doping concentration (3.6 wt%). These bring the heavy charge recombination and consequentially dramatic reduced activity. This work provides a new insight into elemental doping study and takes an important step toward the development of ultrathin 2D photocatalysts.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"29 3","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adfm.201807013","citationCount":"160","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.201807013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 160

Abstract

Herein, an example of Cu-doped few-layer ZnIn2S4 nanosheets is used to reveal the origin of optimum and excess doping for photocatalysts at atomic level. Results show that the metal-S4 coordination maintains well with 0.5 wt% Cu substituted Zn atoms in the lattice. The introduced Cu atoms bring electronic acceptor states close to the valence band (VB) maximum and thus ensures higher charge density and efficient carrier transport, resulting in an optimum hydrogen evolution rate of 26.2 mmol h−1 g−1 and an apparent quantum efficiency of 4.76% at 420 nm. However, a distorted atomic structure and largely upshift of VB maximum with Cu-S3.6 coordination are found with excess doping concentration (3.6 wt%). These bring the heavy charge recombination and consequentially dramatic reduced activity. This work provides a new insight into elemental doping study and takes an important step toward the development of ultrathin 2D photocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光催化中最佳和过量掺杂的原子见解:以少层Cu-ZnIn2S4为例
本文以cu掺杂的少层ZnIn2S4纳米片为例,从原子水平上揭示了光催化剂最佳掺杂和过量掺杂的来源。结果表明,当晶格中Cu取代Zn的比例为0.5 wt%时,金属与s4的配位保持良好。引入的Cu原子使电子受体态接近价带(VB)最大值,从而保证了更高的电荷密度和高效的载流子输运,从而使420 nm的最佳析氢速率为26.2 mmol h−1 g−1,表观量子效率为4.76%。然而,当掺杂浓度超过3.6 wt%时,发现Cu-S3.6配位原子结构扭曲,VB最大值大幅上升。这将导致重电荷重组,从而导致活性显著降低。这项工作为元素掺杂研究提供了新的见解,并为超薄二维光催化剂的发展迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Correction to “Boosting Efficiency and Stability of NiOx-Based Inverted Perovskite Solar Cells through D–A Type Semiconductor Interface Modulation” Light-Directed Microalgae Micromotor with Supramolecular Backpacks for Photodynamic Therapy Accessible and Effective Nanomedicines: Self-Assembly Products From Chinese Herbal Medicines (CHMs) Ink Casting and 3D-Extrusion Printing of Yb14MnSb11 for High-Temperature Thermoelectric Material Dynamically Spreading Shootable Adhesives Inspired by Dough Spinning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1