The Gaussian Beam Summation and the Gaussian Launching Methods in Scattering Problem

P. O. Leye, A. Khenchaf, P. Pouliguen
{"title":"The Gaussian Beam Summation and the Gaussian Launching Methods in Scattering Problem","authors":"P. O. Leye, A. Khenchaf, P. Pouliguen","doi":"10.4236/JEMAA.2016.810020","DOIUrl":null,"url":null,"abstract":"This paper is mainly devoted to application of the Gaussian beam summation technique in electromagnetic simulations problem. Gaussian beams are asymptotic solutions of the Helmholtz equation within the paraxial approximation. Since they are insensitive to ray transition region, several techniques based on Gaussian beam are used to evaluate high frequency EM wave equation, which overcome partially or fully the difficulties of singular regions (caustics, zero field in shadow zones). This paper concentrates on the explicit formulation of the electromagnetic field scattered from radar target. In this approach, when the incident field illuminates the target, the scattering is accounted in a complex weighing function. The wave field at a receiver is evaluated as superposition of Gaussian beams concentrated close to rays emerging from the target, passing through the neighbor of the receiver.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JEMAA.2016.810020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper is mainly devoted to application of the Gaussian beam summation technique in electromagnetic simulations problem. Gaussian beams are asymptotic solutions of the Helmholtz equation within the paraxial approximation. Since they are insensitive to ray transition region, several techniques based on Gaussian beam are used to evaluate high frequency EM wave equation, which overcome partially or fully the difficulties of singular regions (caustics, zero field in shadow zones). This paper concentrates on the explicit formulation of the electromagnetic field scattered from radar target. In this approach, when the incident field illuminates the target, the scattering is accounted in a complex weighing function. The wave field at a receiver is evaluated as superposition of Gaussian beams concentrated close to rays emerging from the target, passing through the neighbor of the receiver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
散射问题中的高斯光束求和与高斯发射方法
本文主要研究高斯波束求和技术在电磁仿真问题中的应用。高斯光束是亥姆霍兹方程在近轴近似内的渐近解。由于高频电磁波方程对射线过渡区不敏感,采用了几种基于高斯光束的方法来求解高频电磁波方程,部分或完全克服了奇异区(焦散、阴影区零场)的困难。本文重点研究了雷达目标散射电磁场的显式表达式。在这种方法中,当入射场照射到目标上时,散射用一个复杂的加权函数来计算。接收器上的波场被评价为高斯光束的叠加,这些光束集中在来自目标的射线附近,穿过接收器的邻居。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
441
期刊最新文献
Determination of the Base Optimum Thickness of Back Illuminated (n+/p/p+) Bifacial Silicon Solar Cell, by Help of Diffusion Coefficient at Resonance Frequency Radio Frequency Quadrupole for Bunching Electron Beam: Electromagnetic Field, Particle Velocity Range, and Accuracy at 10 GHz Generation of Higher Terahertz Harmonics in Nonlinear Paraelectrics under Focusing in a Wide Temperature Range Proper Understanding of the Natures of Electrons, Protons, and Modifying Redundancies in Electro-Magnetism Hints of the Photonic Nature of the Electromagnetic Fields in Classical Electrodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1