Ultra-high Dimensional Variable Screening via Density Weighted Variance

Jingke Zhou, Yingzhen Chen
{"title":"Ultra-high Dimensional Variable Screening via Density Weighted Variance","authors":"Jingke Zhou, Yingzhen Chen","doi":"10.4172/2155-6180.1000401","DOIUrl":null,"url":null,"abstract":"Density Weighted Variance (DWV), a novel model-free feature screening criterion is proposed for mean regression with ultrahigh-dimensional covariates. Compared with existing model free screening criteria, DWV criterion possesses faster convergence rate for inactive co-varieties and is as same convergence rate as most existing variable screening procedures for active covariates. Furthermore, DWV criterion is extended to quintile regression and multiple response regression setting. Finally, numerical simulations and a real data analysis are conducted to show the finite sample performance of the proposed methods.","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":"9 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-6180.1000401","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Density Weighted Variance (DWV), a novel model-free feature screening criterion is proposed for mean regression with ultrahigh-dimensional covariates. Compared with existing model free screening criteria, DWV criterion possesses faster convergence rate for inactive co-varieties and is as same convergence rate as most existing variable screening procedures for active covariates. Furthermore, DWV criterion is extended to quintile regression and multiple response regression setting. Finally, numerical simulations and a real data analysis are conducted to show the finite sample performance of the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密度加权方差超高维变量筛选
针对超高维协变量均值回归,提出了一种新的无模型特征筛选准则——密度加权方差(DWV)。与现有的无模型筛选准则相比,DWV准则对非活性协变量的收敛速度更快,对活性协变量的收敛速度与大多数现有的变量筛选程序相同。进一步将DWV准则扩展到五分位数回归和多响应回归设置。最后,通过数值模拟和实际数据分析,验证了所提方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROSPECTIVELY ESTIMATING THE AGE OF INITIATION OF E-CIGARETTES AMONG U.S. YOUTH: FINDINGS FROM THE POPULATION ASSESSMENT OF TOBACCO AND HEALTH (PATH) STUDY, 2013-2017. The Kumaraswamy-Rani Distribution and Its Applications Analytical Visual Methods to Describe Practice Patterns in a Newly Diagnosed Multiple Myeloma Non-Interventional Disease Registry Short Prognostic APP for Multiple Myeloma Sample Size Charts for Spearman and Kendall Coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1