Quantifying noise in survey expectations

IF 1.9 3区 经济学 Q2 ECONOMICS Quantitative Economics Pub Date : 2023-01-01 DOI:10.3982/qe1633
Artūras Juodis, S. Kucinskas
{"title":"Quantifying noise in survey expectations","authors":"Artūras Juodis, S. Kucinskas","doi":"10.3982/qe1633","DOIUrl":null,"url":null,"abstract":"Expectations affect economic decisions, and inaccurate expectations are costly. Expectations can be wrong due to either bias (systematic mistakes) or noise (unsystematic mistakes). We develop a framework for quantifying the level of noise in survey expectations. The method is based on the insight that theoretical models of expectation formation predict a factor structure for individual expectations. Using data from professional forecasters, we find that the magnitude of noise is large (10%–30% of forecast MSE) and comparable to bias. We illustrate how our estimates can be applied to calibrate models with incomplete information and bound the effects of measurement error.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3982/qe1633","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

Expectations affect economic decisions, and inaccurate expectations are costly. Expectations can be wrong due to either bias (systematic mistakes) or noise (unsystematic mistakes). We develop a framework for quantifying the level of noise in survey expectations. The method is based on the insight that theoretical models of expectation formation predict a factor structure for individual expectations. Using data from professional forecasters, we find that the magnitude of noise is large (10%–30% of forecast MSE) and comparable to bias. We illustrate how our estimates can be applied to calibrate models with incomplete information and bound the effects of measurement error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量化调查预期中的噪音
预期影响经济决策,而不准确的预期代价高昂。由于偏见(系统性错误)或噪音(非系统性错误),预期可能会出错。我们开发了一个框架来量化调查期望中的噪音水平。该方法基于期望形成的理论模型预测个体期望的因素结构的洞察力。使用来自专业预测者的数据,我们发现噪声的大小很大(预测MSE的10%-30%)并且与偏差相当。我们说明了如何将我们的估计应用于具有不完整信息的校准模型并限制测量误差的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
期刊最新文献
Geometric methods for finite rational inattention Measuring trust in institutions and its causal effect A robust permutation test for subvector inference in linear regressions Difficulties in testing for capital overaccumulation Bootstrapping Laplace transforms of volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1