Climate Change Impact on Rainfall and Temperature Distributions Over West Africa from Three IPCC Scenarios

Adefisan Ea
{"title":"Climate Change Impact on Rainfall and Temperature Distributions Over West Africa from Three IPCC Scenarios","authors":"Adefisan Ea","doi":"10.4172/2157-7617.1000476","DOIUrl":null,"url":null,"abstract":"The study investigates the climate change impact on monthly and seasonal distribution of rainfall and temperature of three scenarios of the Intergovernmental Panel on Climate Change (IPCC) between year 2000 and 2099. The analysis considered two climatic periods which are 2000 to 2029 as present and 2070 to 2099 as future. The ten-year mean (decadal) analyses of these two parameters were also performed. The result showed that temperature increases over West Africa countries in all the months under each of the scenarios. Scenario A2 with the highest emission of 800 ppm shows the highest increase of temperature and rainfall over West Africa followed by scenario A1B with emission of 720 ppm and the least is that of B1 with the lowest emission of 550 ppm. The result also showed that rainfall increases over most part of West Africa in all the scenarios with the exception of coastline that a little decrease in amount of rainfall was estimated. However, the decadal analysis shows that there is a gradual and almost consistent increase in temperature and rainfall over West Africa. Monthly mean values of scenario B1 estimated higher in all the months than its scenario A1B counterpart while those of A1B are also higher than those of scenario B1. The result implies that the higher the emission, the higher is the temperature which leads to warmer future and most likely the more rainfall and hence likelihood of flooding, more occurrence of heat wave and other high temperature related problems. It therefore recommended that IPCC regulation to reduce emission should be strictly adhered to by all countries so that the world can have a better future to dwell in.","PeriodicalId":73713,"journal":{"name":"Journal of earth science & climatic change","volume":"9 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2157-7617.1000476","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of earth science & climatic change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7617.1000476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The study investigates the climate change impact on monthly and seasonal distribution of rainfall and temperature of three scenarios of the Intergovernmental Panel on Climate Change (IPCC) between year 2000 and 2099. The analysis considered two climatic periods which are 2000 to 2029 as present and 2070 to 2099 as future. The ten-year mean (decadal) analyses of these two parameters were also performed. The result showed that temperature increases over West Africa countries in all the months under each of the scenarios. Scenario A2 with the highest emission of 800 ppm shows the highest increase of temperature and rainfall over West Africa followed by scenario A1B with emission of 720 ppm and the least is that of B1 with the lowest emission of 550 ppm. The result also showed that rainfall increases over most part of West Africa in all the scenarios with the exception of coastline that a little decrease in amount of rainfall was estimated. However, the decadal analysis shows that there is a gradual and almost consistent increase in temperature and rainfall over West Africa. Monthly mean values of scenario B1 estimated higher in all the months than its scenario A1B counterpart while those of A1B are also higher than those of scenario B1. The result implies that the higher the emission, the higher is the temperature which leads to warmer future and most likely the more rainfall and hence likelihood of flooding, more occurrence of heat wave and other high temperature related problems. It therefore recommended that IPCC regulation to reduce emission should be strictly adhered to by all countries so that the world can have a better future to dwell in.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从IPCC三种情景看气候变化对西非降雨和温度分布的影响
研究了2000 ~ 2099年气候变化对政府间气候变化专门委员会(IPCC)三种情景下降水和温度月度和季节分布的影响。该分析考虑了两个气候期,即2000年至2029年为现在,2070年至2099年为未来。对这两个参数进行了10年平均值(年代际)分析。结果表明,在每个情景下,西非国家的气温在所有月份都在上升。情景A2的排放量最高,为800 ppm,显示西非的温度和降雨量增幅最大,其次是情景A1B,排放量为720 ppm,最小的是情景B1,排放量最低,为550 ppm。结果还表明,在所有情景中,西非大部分地区的降雨量都有所增加,除了海岸线,估计降雨量略有减少。然而,年代际分析表明,西非的温度和降雨量呈逐渐和几乎一致的上升趋势。在所有月份中,B1情景的月平均值均高于A1B情景,而A1B情景的月平均值也高于B1情景。结果表明,排放量越高,温度越高,导致未来变暖,最有可能的是降雨更多,从而可能发生洪水,更容易发生热浪和其他与高温有关的问题。因此,它建议所有国家都应该严格遵守IPCC的减排规定,这样世界才能有一个更美好的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potentials of Protected Areas as Carbon sinks and Implication on Climate Change in Cameroon A Graphical Explanation of Climate Change Effects of Land Use Changes on Soil Erosion and Sedimentation of Dams in Semi-Arid Regions: Example of N’Fis Watershed in Western High Atlas, Morocco Industrial initiatives towards reducing water pollution Climate change can lead to global anoxia and mass extinctions by disrupting oxygen production in oceans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1