{"title":"Application of Remote Sensing for Evaluation of Land Use Change Responses on Hydrology of Muga Watershed, Abbay River Basin, Ethiopia","authors":"Girum Getachew Demeke, T. Andualem","doi":"10.4172/2157-7617.1000493","DOIUrl":null,"url":null,"abstract":"This study deals with impact of land use change on the hydrology of Muga watershed, Ethiopia using remote sensing and the SWAT model. Global sensitivity analysis was used to determine optimal model parameters. Both the calibration and validation was performed using SWAT-CUP and results showed good match between measured and simulated stream flow data with the Nash-Sutcliffe efficiency (NSE) of 0.83, observation standard deviation ratio (RSR) of 0.32 and percent bias (PBIAS) of -10.8% for the calibration, and NSE of 0.79, observation standard deviation ratio (RSR) of 0.54 and percent bias (PBIAS) of -19.8% for the validation period. The overall performance of the model showed that good result. To evaluate land use change impact on hydrology, land use was assigned using six land use classes and processed in ERDAS Imagine and ArcView GIS with the help of ground truth information. Results showed that the area of grass land, shrub land and forest had declined while agricultural land was expanded over the study period. Simulated model results showed an increase of surface runoff in the catchment from 1986 to 2009 while groundwater flow decreased, which is caused due to severe land use changes. By using land use of 2009 as a reference, three scenarios were simulated by changing 5% of each land use (cultivated, grasslands and shrub lands) to forest lands respectively and scenario 1 suggested as best land use scenario to alleviate water resources degradation problem. Citation: Demeke GG, Andualem TG (2018) Application of Remote Sensing for Evaluation of Land Use Change Responses on Hydrology of Muga Watershed, Abbay River Basin, Ethiopia. J Earth Sci Clim Change 9: 493. doi: 10.4172/2157-7617.1000493","PeriodicalId":73713,"journal":{"name":"Journal of earth science & climatic change","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2157-7617.1000493","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of earth science & climatic change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7617.1000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This study deals with impact of land use change on the hydrology of Muga watershed, Ethiopia using remote sensing and the SWAT model. Global sensitivity analysis was used to determine optimal model parameters. Both the calibration and validation was performed using SWAT-CUP and results showed good match between measured and simulated stream flow data with the Nash-Sutcliffe efficiency (NSE) of 0.83, observation standard deviation ratio (RSR) of 0.32 and percent bias (PBIAS) of -10.8% for the calibration, and NSE of 0.79, observation standard deviation ratio (RSR) of 0.54 and percent bias (PBIAS) of -19.8% for the validation period. The overall performance of the model showed that good result. To evaluate land use change impact on hydrology, land use was assigned using six land use classes and processed in ERDAS Imagine and ArcView GIS with the help of ground truth information. Results showed that the area of grass land, shrub land and forest had declined while agricultural land was expanded over the study period. Simulated model results showed an increase of surface runoff in the catchment from 1986 to 2009 while groundwater flow decreased, which is caused due to severe land use changes. By using land use of 2009 as a reference, three scenarios were simulated by changing 5% of each land use (cultivated, grasslands and shrub lands) to forest lands respectively and scenario 1 suggested as best land use scenario to alleviate water resources degradation problem. Citation: Demeke GG, Andualem TG (2018) Application of Remote Sensing for Evaluation of Land Use Change Responses on Hydrology of Muga Watershed, Abbay River Basin, Ethiopia. J Earth Sci Clim Change 9: 493. doi: 10.4172/2157-7617.1000493