Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent

M. Naschie
{"title":"Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent","authors":"M. Naschie","doi":"10.4236/JQIS.2016.61001","DOIUrl":null,"url":null,"abstract":"By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity are behind the physics and mathematics of quantum entanglement theory. To do this we base ourselves on the comprehensive set theoretical and topological machinery of the Cantorian-fractal E-infinity spacetime theory. Going all the way in this direction we even go beyond a quantum gravity theory to a precise set theoretical understanding of what a quantum particle, a quantum wave and quantum spacetime are. As a consequence of all these results and insights we can reason that the local Casimir pressure is the difference between the zero set quantum particle topological pressure and the empty set quantum wave topological pressure which acts as a wormhole “connecting” two different quantum particles with varying degrees of entanglement corresponding to varying degrees of emptiness of the empty set (wormhole). Our final result generalizes the recent conceptual equation of Susskind and Maldacena ER = EPR to become \n \n \n ZMG = ER = EPR \n \n \n where ZMG stands for zero measure Rindler-KAM geometry (of spacetime). These results were only possible because of the ultimate simplicity of our exact model based on Mauldin-Williams random Cantor sets and the corresponding exact Hardy’s quantum entanglement probability P(H) = where is the Hausdorff dimension of the topologically zero dimensional random Cantor thin set, i.e. a zero measure set and . On the other hand the positive measure spatial separation between the zero sets is a fat Cantor empty set possessing a Hausdorff dimension equal while its Menger-Urysohn topological dimension is a negative value equal minus one. This is the mathematical quintessence of a wormhole paralleling multiple connectivity in classical topology. It is both physically there because of the positive measure and not there because of the negative topological dimension.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2016.61001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity are behind the physics and mathematics of quantum entanglement theory. To do this we base ourselves on the comprehensive set theoretical and topological machinery of the Cantorian-fractal E-infinity spacetime theory. Going all the way in this direction we even go beyond a quantum gravity theory to a precise set theoretical understanding of what a quantum particle, a quantum wave and quantum spacetime are. As a consequence of all these results and insights we can reason that the local Casimir pressure is the difference between the zero set quantum particle topological pressure and the empty set quantum wave topological pressure which acts as a wormhole “connecting” two different quantum particles with varying degrees of entanglement corresponding to varying degrees of emptiness of the empty set (wormhole). Our final result generalizes the recent conceptual equation of Susskind and Maldacena ER = EPR to become ZMG = ER = EPR where ZMG stands for zero measure Rindler-KAM geometry (of spacetime). These results were only possible because of the ultimate simplicity of our exact model based on Mauldin-Williams random Cantor sets and the corresponding exact Hardy’s quantum entanglement probability P(H) = where is the Hausdorff dimension of the topologically zero dimensional random Cantor thin set, i.e. a zero measure set and . On the other hand the positive measure spatial separation between the zero sets is a fat Cantor empty set possessing a Hausdorff dimension equal while its Menger-Urysohn topological dimension is a negative value equal minus one. This is the mathematical quintessence of a wormhole paralleling multiple connectivity in classical topology. It is both physically there because of the positive measure and not there because of the negative topological dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
爱因斯坦-罗森桥(ER)、爱因斯坦-波多尔斯基-罗森实验(EPR)和零测量Rindler-KAM Cantorian时空几何(ZMG)在概念上是等价的
通过将时空视为一个超限的图灵计算机,目前的工作旨在对一个相对古老的猜想进行推广和几何拓扑重新解释,即广义相对论的虫洞隐藏在量子纠缠理论的物理和数学背后。为了做到这一点,我们以康托利亚分形e -无穷时空理论的综合理论和拓扑机制为基础。沿着这个方向,我们甚至超越了量子引力理论,对量子粒子,量子波和量子时空有了精确的理论理解。根据所有这些结果和见解,我们可以推断,局部卡西米尔压力是零集量子粒子拓扑压力和空集量子波拓扑压力之间的差,后者作为一个虫洞“连接”两个具有不同纠缠程度的不同量子粒子,对应于空集(虫洞)的不同空度。我们的最终结果将Susskind和Maldacena最近的概念方程ER = EPR推广为ZMG = ER = EPR,其中ZMG代表零测度Rindler-KAM几何(时空)。这些结果是可能的,因为我们基于Mauldin-Williams随机Cantor集的精确模型的最终简单性和相应的精确Hardy量子纠缠概率P(H) =其中是拓扑零维随机Cantor thin集的Hausdorff维数,即零测度集和。另一方面,零集之间的正测度空间分离是一个具有相等Hausdorff维数的fat Cantor空集,而它的Menger-Urysohn拓扑维数是一个负值,等于- 1。这是经典拓扑中虫洞并行多重连接的数学精髓。它在物理上的存在是由于正测度而不是由于负拓扑维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
108
期刊最新文献
Toward Constructing a Continuous Logical Operator for Error-Corrected Quantum Sensing What in Fact Proves the Violation of the Bell-Type Inequalities? Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining Bell’s Theorem and Einstein’s Worry about Quantum Mechanics Accelerating Quantum Readiness for Sectors: Risk Management and Strategies for Sectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1