{"title":"Numerical Analysis of the Fluid Flow Behavior in the Plain Journal Bearing at Textured and Not Textured Surface","authors":"Bendaoud Nadia, Mehala Kadda","doi":"10.4018/ijseims.2021010103","DOIUrl":null,"url":null,"abstract":"Hydrodynamic plain bearings are components that provide the guiding in rotation of rotating machines, such as turbines, the reactors. This equipment works under very severe operating conditions. In order to improve the hydrodynamic performance of these rotating machines, the industrialists specialized in the manufacture of hydrodynamic bearings have designed a bearing model with its textured interior surface. The numerical analysis is carried out to study the for both plain bearings types with a textured a non-textured surface thus to see the improvement of the plain bearing hydrodynamic performances, as well as the fluid flow behavior in motion. The analysis is performed by solving the continuity equation of Navier-Stokes, by the finite volume method, using CFD code. The numerical results show that the most important hydrodynamic characteristics such as pressure, minimal film thickness, friction torque, leakage flow, are significant for the textured plain bearing under rotational velocity of 6000rpm and radial load 10000N compared to obtained for a non-textured plain bearing.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijseims.2021010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrodynamic plain bearings are components that provide the guiding in rotation of rotating machines, such as turbines, the reactors. This equipment works under very severe operating conditions. In order to improve the hydrodynamic performance of these rotating machines, the industrialists specialized in the manufacture of hydrodynamic bearings have designed a bearing model with its textured interior surface. The numerical analysis is carried out to study the for both plain bearings types with a textured a non-textured surface thus to see the improvement of the plain bearing hydrodynamic performances, as well as the fluid flow behavior in motion. The analysis is performed by solving the continuity equation of Navier-Stokes, by the finite volume method, using CFD code. The numerical results show that the most important hydrodynamic characteristics such as pressure, minimal film thickness, friction torque, leakage flow, are significant for the textured plain bearing under rotational velocity of 6000rpm and radial load 10000N compared to obtained for a non-textured plain bearing.