Design and Implementation of Bi-Directional DC-DC Converter for Wind Energy System

K. Suresh, R. Arulmozhiyal
{"title":"Design and Implementation of Bi-Directional DC-DC Converter for Wind Energy System","authors":"K. Suresh, R. Arulmozhiyal","doi":"10.4236/CS.2016.711311","DOIUrl":null,"url":null,"abstract":"This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2016.711311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风电系统双向DC-DC变换器的设计与实现
本文提出了一种用于风能转换系统的双向DC-DC变换器的设计与实现。该项目由升压式DC/DC变换器、双向DC/DC变换器(BDC)、永磁直流发电机和电池组成。采用直流-直流升压变换器与风力系统相连接,提高发电机的初始电压并保持输出电压恒定。风的波动特性使它们不适合单独运行。为了克服这些缺点,在系统中使用储能装置来补偿波动,并在负载的所有工作模式下保持平稳和连续的功率流。双向DC-DC变换器(BDC)能够在两个直流母线之间进行能量转换。当风力发电机输出功率大于所需负载功率时,它可以作为升压变换器向负载提供能量。它也工作在降压模式,从直流母线充电时,输出功率小于所需的负载功率。该变换器降低了元件损耗,提高了系统整体性能。完整的系统在MATLAB/SIMULINK中实现,并进行了硬件验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
273
期刊最新文献
Breast Cancer Detection Based on Multi-Slotted Patch Antenna at ISM Band Dual-Delay-Path Ring Oscillator with Self-Biased Delay Cells for Clock Generation Behavioral Model of Molecular Gap-Type Atomic Switches and Its SPICE Integration Ultrasound Needle Guidance System for Precision Vaccinations and Drug Deliver Drafting an Electrostatic Charge Control Plan for a Large Scale Scientific Instrument: Guidelines and a Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1