{"title":"Characteristics and Diagnosis of the Landfalling Tropical Cyclones in the Guangdong-Hong Kong-Macao Greater Bay Area of China During 1981-2018","authors":"Yu-jie Wang, Yi-zhou Yin, Lian-chun Song","doi":"10.46267/j.1006-8775.2021.022","DOIUrl":null,"url":null,"abstract":"This paper applies statistical and synthetic analysis methods to study the characteristics of the three types of tropical cyclone (TC) that landed in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) from 1981 to 2018 and the reasons for the differences of TC-induced wind and precipitation. The results show that there are interdecadal changes in the frequency and intensity of the landfalling TCs in the GBA, with decreased frequency but increased intensity in the 2010s. The TCs that landed in the west of the Pearl River Estuary (PRE) have the highest frequency and the strongest intensity during landing, which bring the strongest winds; the TCs that landed in the PRE have the lowest frequency and the shortest duration after landing, which cause the strongest precipitation; the TCs that landed in the east of the PRE have the longest duration on the land. This study shows that near the center of the TCs that landed in the PRE, there is a weak anomalous cyclonic shear compared with the ones that landed in the west of the PRE. It is a confluence area of anomalous north wind and anomalous southwest wind, with better water vapor convergence and dynamic rising conditions, which is conducive to the formation of heavy precipitation. Compared with the TCs that landed in the PRE and in its east, there is a closed positive anomalous center of pressure gradient in the northwest center of the TCs that landed in its west, resulting in higher wind speeds in the west of the PRE. The characteristics of the three types of TCs in the GBA are highly related to TC-induced damage. In the future, the GBA needs to focus on preparing for TCs landing in its west. Zhuhai, Jiangmen and Huizhou are key cities to guard against TCs. The results of this study provide foundations for effective management and reduction of TC disaster risks in the future development of the GBA.","PeriodicalId":17432,"journal":{"name":"热带气象学报","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"热带气象学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.46267/j.1006-8775.2021.022","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
This paper applies statistical and synthetic analysis methods to study the characteristics of the three types of tropical cyclone (TC) that landed in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) from 1981 to 2018 and the reasons for the differences of TC-induced wind and precipitation. The results show that there are interdecadal changes in the frequency and intensity of the landfalling TCs in the GBA, with decreased frequency but increased intensity in the 2010s. The TCs that landed in the west of the Pearl River Estuary (PRE) have the highest frequency and the strongest intensity during landing, which bring the strongest winds; the TCs that landed in the PRE have the lowest frequency and the shortest duration after landing, which cause the strongest precipitation; the TCs that landed in the east of the PRE have the longest duration on the land. This study shows that near the center of the TCs that landed in the PRE, there is a weak anomalous cyclonic shear compared with the ones that landed in the west of the PRE. It is a confluence area of anomalous north wind and anomalous southwest wind, with better water vapor convergence and dynamic rising conditions, which is conducive to the formation of heavy precipitation. Compared with the TCs that landed in the PRE and in its east, there is a closed positive anomalous center of pressure gradient in the northwest center of the TCs that landed in its west, resulting in higher wind speeds in the west of the PRE. The characteristics of the three types of TCs in the GBA are highly related to TC-induced damage. In the future, the GBA needs to focus on preparing for TCs landing in its west. Zhuhai, Jiangmen and Huizhou are key cities to guard against TCs. The results of this study provide foundations for effective management and reduction of TC disaster risks in the future development of the GBA.