Ouyang Ping, Yong-qing Wang, Xiu-nian Zhang, Tao Li
{"title":"A Numerical Study of Mesoscale-Topography Influence on the Heavy Rainband of Typhoon Hato","authors":"Ouyang Ping, Yong-qing Wang, Xiu-nian Zhang, Tao Li","doi":"10.46267/j.1006-8775.2021.034","DOIUrl":null,"url":null,"abstract":": During the movement of Typhoon Hato (2017) over land, heavy rainfall occurred when the spiral rainband which was about 100 km distance away from the center of the typhoon passed the Dayao Mountain (with an elevation of 1.2 km). In this study, the structures and forming mechanism of the heavy rainband along the mountain range are investigated by using high-resolution model simulations. The results show the importance of topography in causing the heavy rainband. Upslope of the steep terrain lifts the cyclonic flow to produce strong upward motion when the rainband passes across with high wind speed. At the same time, the warm and humid air is lifted to the steep slope, causing unstable energy to accumulate over the windward slope, which is conducive to the occurrence of rainfall. In particular, the convective cells generated upstream of rainband will further strengthen and develop due to the uplift when they move close to the mountain foot. Some precipitation particles in the convective cells fall to the ground while others move downstream with the intense updrafts, forming heavy rainfall near the summit. As a result, the largest accumulative rainfall coincides well with the orientation of the mountain ridge.","PeriodicalId":17432,"journal":{"name":"热带气象学报","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"热带气象学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.46267/j.1006-8775.2021.034","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
: During the movement of Typhoon Hato (2017) over land, heavy rainfall occurred when the spiral rainband which was about 100 km distance away from the center of the typhoon passed the Dayao Mountain (with an elevation of 1.2 km). In this study, the structures and forming mechanism of the heavy rainband along the mountain range are investigated by using high-resolution model simulations. The results show the importance of topography in causing the heavy rainband. Upslope of the steep terrain lifts the cyclonic flow to produce strong upward motion when the rainband passes across with high wind speed. At the same time, the warm and humid air is lifted to the steep slope, causing unstable energy to accumulate over the windward slope, which is conducive to the occurrence of rainfall. In particular, the convective cells generated upstream of rainband will further strengthen and develop due to the uplift when they move close to the mountain foot. Some precipitation particles in the convective cells fall to the ground while others move downstream with the intense updrafts, forming heavy rainfall near the summit. As a result, the largest accumulative rainfall coincides well with the orientation of the mountain ridge.