Andreeva Na, L. Trilisenko, M. Eldarov, T. Kulakovskaya
{"title":"Polyphosphatase PPN1 of Saccharomyces cerevisiae Is a Deoxyadenosine Triphosphate Phosphohydrolase","authors":"Andreeva Na, L. Trilisenko, M. Eldarov, T. Kulakovskaya","doi":"10.4236/AER.2016.44013","DOIUrl":null,"url":null,"abstract":"The Saccharomyces cerevisiae polyphosphatase PPN1 (uniprot/Q04119) degrades inorganic polyphosphates both by cleaving Pi from the chain end and by fragmenting long-chain polymers into shorter ones. In this study, we have found a new activity of this protein: it releases phosphate from dATP. The dATP phosphohydrolase activity of pure PPN1 was ~7-fold lower compared to the exopolyphosphatase activity. This activity was strongly stimulated by Co2+ ions, as well as by ammonium ions, and inhibited by heparin and pyrophosphate similar to the exopolyphosphatase activity of PPN1. The Km value for dATP was 0.88 ± 0.14 mM. The dATP phosphohydrolase activity in the cells of PPN1-overexpressing yeast strain was several-fold higher than that in the parent strain. The other exopolyphosphatase of S. cerevisiae, PPX1, did not split Pi from dATP.","PeriodicalId":65616,"journal":{"name":"酶研究进展(英文)","volume":"04 1","pages":"144-151"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"酶研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/AER.2016.44013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Saccharomyces cerevisiae polyphosphatase PPN1 (uniprot/Q04119) degrades inorganic polyphosphates both by cleaving Pi from the chain end and by fragmenting long-chain polymers into shorter ones. In this study, we have found a new activity of this protein: it releases phosphate from dATP. The dATP phosphohydrolase activity of pure PPN1 was ~7-fold lower compared to the exopolyphosphatase activity. This activity was strongly stimulated by Co2+ ions, as well as by ammonium ions, and inhibited by heparin and pyrophosphate similar to the exopolyphosphatase activity of PPN1. The Km value for dATP was 0.88 ± 0.14 mM. The dATP phosphohydrolase activity in the cells of PPN1-overexpressing yeast strain was several-fold higher than that in the parent strain. The other exopolyphosphatase of S. cerevisiae, PPX1, did not split Pi from dATP.