George M. Cavalcanti-Júnior, Fernando Buarque de Lima-Neto, C. Bastos-Filho
{"title":"On the Analysis of HPSO Improvement by Use of the Volitive Operator of Fish School Search","authors":"George M. Cavalcanti-Júnior, Fernando Buarque de Lima-Neto, C. Bastos-Filho","doi":"10.4018/JSIR.2013010103","DOIUrl":null,"url":null,"abstract":"Swarm Intelligence algorithms have been extensively applied to solve optimization problems. However, in some domains even well-established techniques such as Particle Swarm Optimization (PSO) may not present the necessary ability to generate diversity during the process of the swarm convergence. Indeed, this is the major difficulty to use PSO to tackle dynamic problems. Many efforts to overcome this weakness have been made. One of them is through the hybridization of the PSO with other algorithms. For example, the Volitive PSO is a hybrid algorithm that presents as good performance on dynamic problems by applying a very interesting feature, the collective volitive operator, which was extracted from the Fish School Search algorithm and embedded into PSO. In this paper, the authors investigated further hybridizations in line with the Volitive PSO approach. This time they used the Heterogeneous PSO instead of the PSO, and named this novel approach Volitive HPSO. In the paper, the authors investigate the influence of the collective volitive operator (of FSS) in the HPSO. The results show that this operator significantly improves HPSO performance when compared to the non-hybrid approaches of PSO and its variations in dynamic environments.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"4 1","pages":"62-77"},"PeriodicalIF":0.8000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/JSIR.2013010103","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/JSIR.2013010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Swarm Intelligence algorithms have been extensively applied to solve optimization problems. However, in some domains even well-established techniques such as Particle Swarm Optimization (PSO) may not present the necessary ability to generate diversity during the process of the swarm convergence. Indeed, this is the major difficulty to use PSO to tackle dynamic problems. Many efforts to overcome this weakness have been made. One of them is through the hybridization of the PSO with other algorithms. For example, the Volitive PSO is a hybrid algorithm that presents as good performance on dynamic problems by applying a very interesting feature, the collective volitive operator, which was extracted from the Fish School Search algorithm and embedded into PSO. In this paper, the authors investigated further hybridizations in line with the Volitive PSO approach. This time they used the Heterogeneous PSO instead of the PSO, and named this novel approach Volitive HPSO. In the paper, the authors investigate the influence of the collective volitive operator (of FSS) in the HPSO. The results show that this operator significantly improves HPSO performance when compared to the non-hybrid approaches of PSO and its variations in dynamic environments.
期刊介绍:
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.