D. Steffens, Rodrigo Alvarenga Rezende, B. Santi, Frederico David Alencar de Sena Pereira, Paulo Inforçatti Neto, Jorge Vicente Lopes da Silva, P. Pranke
{"title":"3D-Printed PCL Scaffolds for the Cultivation of Mesenchymal Stem Cells","authors":"D. Steffens, Rodrigo Alvarenga Rezende, B. Santi, Frederico David Alencar de Sena Pereira, Paulo Inforçatti Neto, Jorge Vicente Lopes da Silva, P. Pranke","doi":"10.5301/jabfm.5000252","DOIUrl":null,"url":null,"abstract":"Introduction Tissue engineering is a field which is currently under a great deal of investigation for the development and/or restoration of tissue and organs, through the combination of cell therapy with biomaterials. Rapid prototyping or additive manufacturing is a versatile technology which makes possible the fabrication of three dimensional (3D) structures from a wide range of materials with complex geometry and accuracy, such as scaffolds. Aim The aim of this study has been to investigate the interaction between mesenchymal stem cells with poly (ε-caprolactone) (PCL) biomaterials used for obtaining scaffolds through additive manufacturing. Materials and Methods Scanning electron microscopy, confocal microscopy and biological assays were performed to analyse the successful interaction between the cells and the biomaterials. Results As a result, the number of viable cells attached to the scaffolds was lower when compared to the control group; however, it was possible to observe cells in the scaffolds since day 1 of analysis, with regions of confluence after 21 days of seeding. Conclusions To conclude, these biomaterials are interesting if used as medical artifacts, principally in tissue with prolonged regeneration time and which requires 3D supports with good mechanical properties.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":"14 1","pages":"19 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5301/jabfm.5000252","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5301/jabfm.5000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Introduction Tissue engineering is a field which is currently under a great deal of investigation for the development and/or restoration of tissue and organs, through the combination of cell therapy with biomaterials. Rapid prototyping or additive manufacturing is a versatile technology which makes possible the fabrication of three dimensional (3D) structures from a wide range of materials with complex geometry and accuracy, such as scaffolds. Aim The aim of this study has been to investigate the interaction between mesenchymal stem cells with poly (ε-caprolactone) (PCL) biomaterials used for obtaining scaffolds through additive manufacturing. Materials and Methods Scanning electron microscopy, confocal microscopy and biological assays were performed to analyse the successful interaction between the cells and the biomaterials. Results As a result, the number of viable cells attached to the scaffolds was lower when compared to the control group; however, it was possible to observe cells in the scaffolds since day 1 of analysis, with regions of confluence after 21 days of seeding. Conclusions To conclude, these biomaterials are interesting if used as medical artifacts, principally in tissue with prolonged regeneration time and which requires 3D supports with good mechanical properties.