Effect of Cold Drawing on Mechanical Properties of Biodegradable Fibers

F. L. La Mantia, M. Ceraulo, M. Mistretta, M. Morreale
{"title":"Effect of Cold Drawing on Mechanical Properties of Biodegradable Fibers","authors":"F. L. La Mantia, M. Ceraulo, M. Mistretta, M. Morreale","doi":"10.5301/jabfm.5000328","DOIUrl":null,"url":null,"abstract":"Purpose Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Methods Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. Results and conclusions It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":"15 1","pages":"70 - 76"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5301/jabfm.5000328","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5301/jabfm.5000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Purpose Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Methods Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. Results and conclusions It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷拔对可生物降解纤维力学性能的影响
生物可降解聚合物目前在若干领域越来越重要,因为它们可以减轻处置传统的、不可生物降解的聚合物对环境的影响,并减少对油基来源(当它们也来自可再生资源时)的利用。由可生物降解聚合物制成的纤维是特别感兴趣的,尽管,获得具有适当机械性能的聚合物纤维并根据具体应用进行定制并不容易。定制给定生物可降解聚合物纤维的机械性能的主要方法是基于结晶度和取向控制。然而,在加工过程中,结晶度只能略微改变,而取向可以在热拉伸或冷拉伸期间控制。本文系统地研究了冷拉伸对不同可生物降解聚合物体系制备的纤维力学和热力学性能的影响。方法基于聚合物体系的分子结构,通过流变学和热特性来解释取向机理。结果与结论与热纺纤维相比,冷拔能明显提高纤维的弹性模量、抗拉强度和耐热性。在生物降解体系中,随着拉伸比的增加,弹性模量呈现出较高的增长速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Biomaterials & Biomechanics
Journal of Applied Biomaterials & Biomechanics 生物-材料科学:生物材料
自引率
0.00%
发文量
0
审稿时长
12 months
期刊最新文献
Flow investigation of second grade micropolar nanofluid with porous medium over an exponentially stretching sheet β-TCP/DCPD-PHBV (40%/60%): Biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way The effects of several operative parameters on the grafting of selected grafting agents on a polyamide six (PA6) fiber surface A Copper nanoparticles-based polymeric spray coating: Nanoshield against Sars-Cov-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1