{"title":"Time-Fractal in Living Objects","authors":"A. Szász","doi":"10.4236/ojbiphy.2022.121001","DOIUrl":null,"url":null,"abstract":"Homeostasis creates self-organized synchrony of the body’s reactions, and despite the energetically open system with intensive external and internal interactions, it is robustly stable. Importantly the self-organized system has scal-ing behaviors in its allometry, internal structures, and dynamic processes. The system works stochastically. Deterministic reductionism has validity only by the great average of the probabilistic processes. The system’s dynamics have a characteristic distribution of signals, which may be characterized by their frequency distribution, creating a particular “noise” 1/f of the power density. The stochastic processes produce resonances pumped by various noise spectra. The chemical processes are mostly driven by enzymatic processes, which also have noise-dependent resonant optimizing. The resonance frequencies are as many as many enzymatic reactions exist in the target.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojbiphy.2022.121001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Homeostasis creates self-organized synchrony of the body’s reactions, and despite the energetically open system with intensive external and internal interactions, it is robustly stable. Importantly the self-organized system has scal-ing behaviors in its allometry, internal structures, and dynamic processes. The system works stochastically. Deterministic reductionism has validity only by the great average of the probabilistic processes. The system’s dynamics have a characteristic distribution of signals, which may be characterized by their frequency distribution, creating a particular “noise” 1/f of the power density. The stochastic processes produce resonances pumped by various noise spectra. The chemical processes are mostly driven by enzymatic processes, which also have noise-dependent resonant optimizing. The resonance frequencies are as many as many enzymatic reactions exist in the target.