Pub Date : 2023-01-01DOI: 10.4236/ojbiphy.2023.131001
Olatoundé Herbert Fachinan, E. Bathily, M. S. Djigo, G. D. Houndétoungan, D. M. Issoufou, B. Ndong, K. M. Amoussou-Guénou, M. Mbodj
{"title":"Contribution of Scintigraphy in the Assessment of Extension of Osteophilic Cancers in Senegal from 2018 to 2021","authors":"Olatoundé Herbert Fachinan, E. Bathily, M. S. Djigo, G. D. Houndétoungan, D. M. Issoufou, B. Ndong, K. M. Amoussou-Guénou, M. Mbodj","doi":"10.4236/ojbiphy.2023.131001","DOIUrl":"https://doi.org/10.4236/ojbiphy.2023.131001","url":null,"abstract":"","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.4236/ojbiphy.2023.133004
Yuri Alves de Oliveira Só, M. Júnior, Wiliam Ferreira Giozza, Rafael Timóteo de Sousa Júnior, R. Gargano, L. A. R. Júnior
{"title":"In Silico Evaluation of the Potential Interference of Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376 in the Binding of SARS-CoV-2 Spike Protein to Human Nanobody Nb20","authors":"Yuri Alves de Oliveira Só, M. Júnior, Wiliam Ferreira Giozza, Rafael Timóteo de Sousa Júnior, R. Gargano, L. A. R. Júnior","doi":"10.4236/ojbiphy.2023.133004","DOIUrl":"https://doi.org/10.4236/ojbiphy.2023.133004","url":null,"abstract":"","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.4236/ojbiphy.2023.132003
S. M. Badiane, K. Gueye, A. Dia, Amadou Barro
{"title":"Subacute Hyperthyroidism Induced by Treatment with Lithium Salts","authors":"S. M. Badiane, K. Gueye, A. Dia, Amadou Barro","doi":"10.4236/ojbiphy.2023.132003","DOIUrl":"https://doi.org/10.4236/ojbiphy.2023.132003","url":null,"abstract":"","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"31 8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojbiphy.2022.124008
A. N. Shoutko, O. Gerasimova
{"title":"NLR’s Analogs with Young Blood Cells in Monitoring of Toxicity of Long-Term Preventing Immunosuppression in the Liver Transplant’s Recipients","authors":"A. N. Shoutko, O. Gerasimova","doi":"10.4236/ojbiphy.2022.124008","DOIUrl":"https://doi.org/10.4236/ojbiphy.2022.124008","url":null,"abstract":"","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojbiphy.2022.122006
Xiaodi Zhang, Hui Zhang
{"title":"A Bio-Physical Analysis of Extracellular Ion Mobility and Electric Field Stress","authors":"Xiaodi Zhang, Hui Zhang","doi":"10.4236/ojbiphy.2022.122006","DOIUrl":"https://doi.org/10.4236/ojbiphy.2022.122006","url":null,"abstract":"","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojbiphy.2022.124012
Apeke Sena, Gaubert Laurent, B. Nicolas, Visvikis Dimitris, Saut Olivier, Colin Thierry, L. Philippe, Rodin Vincent, Redou Pascal
{"title":"An Hybrid Model for Rectal Tumour Response Prediction during Radiotherapy","authors":"Apeke Sena, Gaubert Laurent, B. Nicolas, Visvikis Dimitris, Saut Olivier, Colin Thierry, L. Philippe, Rodin Vincent, Redou Pascal","doi":"10.4236/ojbiphy.2022.124012","DOIUrl":"https://doi.org/10.4236/ojbiphy.2022.124012","url":null,"abstract":"","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojbiphy.2022.124011
Guido Paoli
It is important to look at the behaviour of a living system from the point of view of the biophysical paradigm. In fact, the chemical reactions, which allow us to understand how metabolic processes take place, are short-range and they are activated at a distance of one atomic or molecular diameter. 100,000 reactions/sec. take place in a cell, perfectly balanced in space and time, i.e. these happen at the right time and in the right place. So, it is chemically inex-plicable how this can be possible, because it is absolutely necessary that molecules recognize each other at distances greater than a molecular diameter. The biophysical paradigm, through coherent resonance mechanisms, tries to explain how molecules can recognize each other “from afar”. It is a matter of beginning to understand that, probably, the same atoms and molecules are endowed with a kind of “intrinsic intelligence” that guides them in their interactions, and the key to understanding can only be of physical type. We can also hypothesize that a cellular information mechanism based on endogenous electromagnetic fields exists. In this way, DNA could play a role of in-out antenna, due to its double helix shape (resonant LC circuit). This paper speaks about these unexpected, but not too many, connections between Physics and Biology.
{"title":"Can a Molecule Be “Intelligent”? Unexpected Connections between Physics and Biology","authors":"Guido Paoli","doi":"10.4236/ojbiphy.2022.124011","DOIUrl":"https://doi.org/10.4236/ojbiphy.2022.124011","url":null,"abstract":"It is important to look at the behaviour of a living system from the point of view of the biophysical paradigm. In fact, the chemical reactions, which allow us to understand how metabolic processes take place, are short-range and they are activated at a distance of one atomic or molecular diameter. 100,000 reactions/sec. take place in a cell, perfectly balanced in space and time, i.e. these happen at the right time and in the right place. So, it is chemically inex-plicable how this can be possible, because it is absolutely necessary that molecules recognize each other at distances greater than a molecular diameter. The biophysical paradigm, through coherent resonance mechanisms, tries to explain how molecules can recognize each other “from afar”. It is a matter of beginning to understand that, probably, the same atoms and molecules are endowed with a kind of “intrinsic intelligence” that guides them in their interactions, and the key to understanding can only be of physical type. We can also hypothesize that a cellular information mechanism based on endogenous electromagnetic fields exists. In this way, DNA could play a role of in-out antenna, due to its double helix shape (resonant LC circuit). This paper speaks about these unexpected, but not too many, connections between Physics and Biology.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojbiphy.2022.121001
A. Szász
Homeostasis creates self-organized synchrony of the body’s reactions, and despite the energetically open system with intensive external and internal interactions, it is robustly stable. Importantly the self-organized system has scal-ing behaviors in its allometry, internal structures, and dynamic processes. The system works stochastically. Deterministic reductionism has validity only by the great average of the probabilistic processes. The system’s dynamics have a characteristic distribution of signals, which may be characterized by their frequency distribution, creating a particular “noise” 1/f of the power density. The stochastic processes produce resonances pumped by various noise spectra. The chemical processes are mostly driven by enzymatic processes, which also have noise-dependent resonant optimizing. The resonance frequencies are as many as many enzymatic reactions exist in the target.
{"title":"Time-Fractal in Living Objects","authors":"A. Szász","doi":"10.4236/ojbiphy.2022.121001","DOIUrl":"https://doi.org/10.4236/ojbiphy.2022.121001","url":null,"abstract":"Homeostasis creates self-organized synchrony of the body’s reactions, and despite the energetically open system with intensive external and internal interactions, it is robustly stable. Importantly the self-organized system has scal-ing behaviors in its allometry, internal structures, and dynamic processes. The system works stochastically. Deterministic reductionism has validity only by the great average of the probabilistic processes. The system’s dynamics have a characteristic distribution of signals, which may be characterized by their frequency distribution, creating a particular “noise” 1/f of the power density. The stochastic processes produce resonances pumped by various noise spectra. The chemical processes are mostly driven by enzymatic processes, which also have noise-dependent resonant optimizing. The resonance frequencies are as many as many enzymatic reactions exist in the target.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojbiphy.2022.123007
Sage Copling, Maansi Srinivasan, Preet Sharma
Introduction: A mutation, in general, can be defined as a change in the genetic sequence. Mutations can be changes as small as the substitution of a single DNA building block, or nucleotide base, with another nucleotide base. There can be larger mutations which can affect many genes on a chromo-some. In this study we have tried to understand a normal mutation and a failed mutation from the point of view of entropy. We have shown that the entropy range of a normal mutation is less compared to the entropy range of a failed mutation. In this article we have plotted the increase of entropy of both types of mutations mentioned above. Statistical Physics of Partition Function and Entropy: In this section we have used statistical physics to de-fine the partition function of an ensemble. Based on the partition function we have expressed how to calculate physical quantities such as average energy and entropy. Model Independent Mutation Entropy: The entropy of all processes increases. This is true even for biological systems. We have shown the difference between the entropy of a successful mutation and a failed mutation. Conclusion: In conclusion we have shown how the entropy of a successful mutation differs from that of a failed mutation. This opens up future research opportunities where we can apply this to specific biological systems.
{"title":"Understanding Model Independent Genetic Mutations through Trends in Increase in Entropy","authors":"Sage Copling, Maansi Srinivasan, Preet Sharma","doi":"10.4236/ojbiphy.2022.123007","DOIUrl":"https://doi.org/10.4236/ojbiphy.2022.123007","url":null,"abstract":"Introduction: A mutation, in general, can be defined as a change in the genetic sequence. Mutations can be changes as small as the substitution of a single DNA building block, or nucleotide base, with another nucleotide base. There can be larger mutations which can affect many genes on a chromo-some. In this study we have tried to understand a normal mutation and a failed mutation from the point of view of entropy. We have shown that the entropy range of a normal mutation is less compared to the entropy range of a failed mutation. In this article we have plotted the increase of entropy of both types of mutations mentioned above. Statistical Physics of Partition Function and Entropy: In this section we have used statistical physics to de-fine the partition function of an ensemble. Based on the partition function we have expressed how to calculate physical quantities such as average energy and entropy. Model Independent Mutation Entropy: The entropy of all processes increases. This is true even for biological systems. We have shown the difference between the entropy of a successful mutation and a failed mutation. Conclusion: In conclusion we have shown how the entropy of a successful mutation differs from that of a failed mutation. This opens up future research opportunities where we can apply this to specific biological systems.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.4236/ojbiphy.2022.121002
D. M. Salif, N. Boucar, Bathily El Hadji Amadou Lamine, Diop Ousseynou, G. Kalidou, Thiaw Gora, N. Oumar, Mbodji Mamadou
Cardiac amyloidosis presents a picture of hypertrophic cardiomyopathy with heart failure with preserved ejection fraction. It is largely underdiagnosed, especially in black Africans, and therefore falls under the category of heart disease classified as idiopathic. Light chain amyloidosis (AL) is mainly found in Caucasian subjects and the mutant variant of transthyretin (TTRm) in ne-groid subjects. Numerous studies have shown that ATTRm was found predominantly in black American and black British patients. In African countries the entity of idiopathic heart failure is quite important because of lack of diagnosis, ETT, MRI and immuno-histochemistry are expensive or not available. We can probably assume that the proportion of cardiac amyloidosis is quite important in black Africans. The question is if 99m Tc-DPD really easy to perform, can probably help to investigate in the nuclear medicine department in Africa. No large-scale study has been able to demonstrate the prevalence or not of cardiac amyloidosis in black-African subjects and by extension reduce this nosological entity of idiopathic heart disease. The 99m Tc-DPD scintigraphy using Perrugini’s visual sore allows localization and classification of amyloid damage. The mechanism 99m Tc-DPD scintigraphy compared to other diagnostic modalities and to con-sider its use given its simplicity when it comes to usage in Sub-Saharan Africa to diagnose the disease. cardiac amyloidosis and by extension reduce the number of cases of heart disease classified as idiopathic and thus allow early and appropriate management.
{"title":"Contribution of 99mTc-DPD Scintigraphy in the Diagnosis of Cardiac Amyloidosis in Black Africans","authors":"D. M. Salif, N. Boucar, Bathily El Hadji Amadou Lamine, Diop Ousseynou, G. Kalidou, Thiaw Gora, N. Oumar, Mbodji Mamadou","doi":"10.4236/ojbiphy.2022.121002","DOIUrl":"https://doi.org/10.4236/ojbiphy.2022.121002","url":null,"abstract":"Cardiac amyloidosis presents a picture of hypertrophic cardiomyopathy with heart failure with preserved ejection fraction. It is largely underdiagnosed, especially in black Africans, and therefore falls under the category of heart disease classified as idiopathic. Light chain amyloidosis (AL) is mainly found in Caucasian subjects and the mutant variant of transthyretin (TTRm) in ne-groid subjects. Numerous studies have shown that ATTRm was found predominantly in black American and black British patients. In African countries the entity of idiopathic heart failure is quite important because of lack of diagnosis, ETT, MRI and immuno-histochemistry are expensive or not available. We can probably assume that the proportion of cardiac amyloidosis is quite important in black Africans. The question is if 99m Tc-DPD really easy to perform, can probably help to investigate in the nuclear medicine department in Africa. No large-scale study has been able to demonstrate the prevalence or not of cardiac amyloidosis in black-African subjects and by extension reduce this nosological entity of idiopathic heart disease. The 99m Tc-DPD scintigraphy using Perrugini’s visual sore allows localization and classification of amyloid damage. The mechanism 99m Tc-DPD scintigraphy compared to other diagnostic modalities and to con-sider its use given its simplicity when it comes to usage in Sub-Saharan Africa to diagnose the disease. cardiac amyloidosis and by extension reduce the number of cases of heart disease classified as idiopathic and thus allow early and appropriate management.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}