Elisa Fernandez-Tudela, Luis C. Zambrano, L. Lagóstena, M. Bethencourt
{"title":"Documentación y análisis de un cepo de ancla romano y sus elementos iconográficos y epigráficos sellados","authors":"Elisa Fernandez-Tudela, Luis C. Zambrano, L. Lagóstena, M. Bethencourt","doi":"10.4995/var.2022.15349","DOIUrl":null,"url":null,"abstract":"This paper aims to present the documentation and analysis methodology carried out on a lead trap from the ancient period, which belongs to the collection of traps in the Museum of Cádiz (Andalusia, Spain). The anchor stock had some interesting characteristics for this research. On the one hand, from the point of view of conservation and restoration, due to the alterations it presented. On the other hand, from a historical and archaeological point of view, it showed signs of reliefs on its surface hidden under the alteration products. The removal of the different layers of alteration that covered the surface during conservation and restoration treatments revealed an unpublished iconographic and epigraphic programme, as well as possible marks of use and manufacture. The poor state of conservation of the original surface made it impossible to visualise the details as a whole, so we applied photogrammetric methods, and subsequently processed models using various GIS analysis and point cloud processing softwares.Two photogrammetric models (in Agisoft PhotoScan) were made to document the trap in general: one prior to the conservation and restoration process; and a second three-dimensional (3D) model once the surface had been cleaned. The purpose of the second model was to visualise the reliefs programme in general, as well as the different surface details. The first complete 3D model of the object was used to perform a virtual reconstruction of the anchor including the elements that did not preserve, using a 3D modelling program (Blender).Nine areas of the stock surface were selected for the analyses of the various iconographic and epigraphic features, which were documented and processed in Agisoft PhotoScan. The Digital Elevation Model (DEM) and point cloud models were then processed with different analyses tools in Geographic Information System (GIS) (such as QGIS) and point cloud processing software (CloudCompare). Our results document a piece of highly interesting information from its surface consisting of reliefs of four dolphins; at least four rectangular stamps: two of them with possible inscriptions, and an anthropomorphic figure. Thanks to the comparative data, we conclude that the four dolphins were made with the same stamp during the stock manufacturing process. Further, we were able to reconstruct the dolphin stamp, partially preserved in each of the reliefs, by unifying the 3D models, thus revealing the original set. This system of stamping by means of reusable dies is well known in other elements such as amphorae but has not been studied in the specific case of lead traps.In the case of the epigraphic elements, the 3D documentation methodology revealed numerous micro-surface details, not visible under conventional documentation techniques, which could help specialists to interpret these inscriptions. Although they have not been analysed in this research, its documentation has promoted the appreciation of surface details that could refer to the manufacturing processes (moulds and tools) or the traces of use, providing historical information on this object. At the same time, the virtual reconstruction of the anchor has aided the formation of hypotheses on the dimensions and original appearance of the anchor. The different tools used, such as raster analysis using shadow mapping and point cloud alignment, proved to be very effective. They have fulfilled the established objectives and have helped to establish a possible analysis methodology for future lead traps with decorative elements. These types of artefacts recovered from underwater sites are very common in museum collections. In many cases, their state of conservation and the difficulty in handling them due to their size and weight make it difficult to document surface details. In this case, the multidisciplinary work of conservation and 3D documentation allows for high-quality documentation that is easy to access and exchange between researchers. The combined use of photogrammetric techniques with virtual RTI provides a non-invasive method for the object, low cost and easy processing compared to other conventional methods.","PeriodicalId":44206,"journal":{"name":"Virtual Archaeology Review","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Archaeology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/var.2022.15349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
This paper aims to present the documentation and analysis methodology carried out on a lead trap from the ancient period, which belongs to the collection of traps in the Museum of Cádiz (Andalusia, Spain). The anchor stock had some interesting characteristics for this research. On the one hand, from the point of view of conservation and restoration, due to the alterations it presented. On the other hand, from a historical and archaeological point of view, it showed signs of reliefs on its surface hidden under the alteration products. The removal of the different layers of alteration that covered the surface during conservation and restoration treatments revealed an unpublished iconographic and epigraphic programme, as well as possible marks of use and manufacture. The poor state of conservation of the original surface made it impossible to visualise the details as a whole, so we applied photogrammetric methods, and subsequently processed models using various GIS analysis and point cloud processing softwares.Two photogrammetric models (in Agisoft PhotoScan) were made to document the trap in general: one prior to the conservation and restoration process; and a second three-dimensional (3D) model once the surface had been cleaned. The purpose of the second model was to visualise the reliefs programme in general, as well as the different surface details. The first complete 3D model of the object was used to perform a virtual reconstruction of the anchor including the elements that did not preserve, using a 3D modelling program (Blender).Nine areas of the stock surface were selected for the analyses of the various iconographic and epigraphic features, which were documented and processed in Agisoft PhotoScan. The Digital Elevation Model (DEM) and point cloud models were then processed with different analyses tools in Geographic Information System (GIS) (such as QGIS) and point cloud processing software (CloudCompare). Our results document a piece of highly interesting information from its surface consisting of reliefs of four dolphins; at least four rectangular stamps: two of them with possible inscriptions, and an anthropomorphic figure. Thanks to the comparative data, we conclude that the four dolphins were made with the same stamp during the stock manufacturing process. Further, we were able to reconstruct the dolphin stamp, partially preserved in each of the reliefs, by unifying the 3D models, thus revealing the original set. This system of stamping by means of reusable dies is well known in other elements such as amphorae but has not been studied in the specific case of lead traps.In the case of the epigraphic elements, the 3D documentation methodology revealed numerous micro-surface details, not visible under conventional documentation techniques, which could help specialists to interpret these inscriptions. Although they have not been analysed in this research, its documentation has promoted the appreciation of surface details that could refer to the manufacturing processes (moulds and tools) or the traces of use, providing historical information on this object. At the same time, the virtual reconstruction of the anchor has aided the formation of hypotheses on the dimensions and original appearance of the anchor. The different tools used, such as raster analysis using shadow mapping and point cloud alignment, proved to be very effective. They have fulfilled the established objectives and have helped to establish a possible analysis methodology for future lead traps with decorative elements. These types of artefacts recovered from underwater sites are very common in museum collections. In many cases, their state of conservation and the difficulty in handling them due to their size and weight make it difficult to document surface details. In this case, the multidisciplinary work of conservation and 3D documentation allows for high-quality documentation that is easy to access and exchange between researchers. The combined use of photogrammetric techniques with virtual RTI provides a non-invasive method for the object, low cost and easy processing compared to other conventional methods.
期刊介绍:
Virtual Archaeology Review (VAR) aims the publication of original papers, interdisciplinary reviews and essays on the new discipline of virtual archaeology, which is continuously evolving and currently on its way to achieve scientific consolidation. In fact, Virtual Archaeology deals with the digital representation of historical heritage objects, buildings and landscapes through 3D acquisition, digital recording and interactive and immersive tools for analysis, interpretation, dissemination and communication purposes by means of multidimensional geometric properties and visual computational modelling. VAR will publish full-length original papers which reflect both current research and practice throughout the world, in order to contribute to the advancement of the new field of virtual archaeology, ranging from new ways of digital recording and documentation, advanced reconstruction and 3D modelling up to cyber-archaeology, virtual exhibitions and serious gaming. Thus acceptable material may emerge from interesting applications as well as from original developments or research. OBJECTIVES: - OFFER researchers working in the field of virtual archaeology and cultural heritage an appropriate editorial frame to publish state-of-the-art research works, as well as theoretical and methodological contributions. - GATHER virtual archaeology progresses achieved as a new international scientific discipline. - ENCOURAGE the publication of the latest, state-of-the-art, significant research and meaningful applications in the field of virtual archaeology. - ENHANCE international connections in the field of virtual archaeology and cultural heritage.