Comparison and Estimation of Four Infiltration Models

A. Thomas, Antwi Eric Ofosu, Amankwah Emmanuel, Ankamah Johnson De-Graft, A. Ayine, A. Asare, Antwi Alexander
{"title":"Comparison and Estimation of Four Infiltration Models","authors":"A. Thomas, Antwi Eric Ofosu, Amankwah Emmanuel, Ankamah Johnson De-Graft, A. Ayine, A. Asare, Antwi Alexander","doi":"10.4236/ojss.2020.102003","DOIUrl":null,"url":null,"abstract":"Infiltration is an important component of the hydrological cycle. It provides soil moisture in the vadose zone to support plant growth. This study was conducted to compare the validity of four infiltration models with measured values from the double ring infiltrometer. The parameters of the four models compared were estimated using the linear regression analysis. The C.C was used to show the performance of the predictability of the models. The RMSE, MAE and MBE were employed to check the anomalies between the predicted and the observed values. The results showed that, average values of the C.C ranged from 0.9294 - 0.9852. The average values of the RMSE were 4.0033, −17.489, 11.2400 and 49.8448; MAE were 3.1341, 15.9802, 10.6525, and 61.4736; and MBE were 0.0786, 9.5755, 0.0007 and 47.0204 for Philip, Horton, Green Ampt and Kostiakov respectively for the wetland soils. Statistical results also from the Fisher’s multiple comparison test show that the mean infiltration rate estimated from the Green Ampt’s, Philip’s and Horton’s model was not significantly different (p > 0.05) from the observed. The results indicated that the Kostiakov’s model had the highest deviations as it overestimated the measured data in all the plots. Comparison of the statistical parameters C.C, RMSE, MAE, and MBE for the four models indicates that the Philip’s model agreed well with the measured data and therefore, performed better than the Green Ampt’s, Horton’s and Kostiakov’s models respectively in that order for Besease wetland soils. Estimation of infiltration rate by the Philip’s model is important in the design of irrigation schemes and scheduling. Therefore, in the absence of measured infiltration data, the Philip’s model could be used to produce infiltration information for inland valley bottom soils that exhibit similar characteristic as Besease wetland soils.","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"土壤科学期刊(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.4236/ojss.2020.102003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Infiltration is an important component of the hydrological cycle. It provides soil moisture in the vadose zone to support plant growth. This study was conducted to compare the validity of four infiltration models with measured values from the double ring infiltrometer. The parameters of the four models compared were estimated using the linear regression analysis. The C.C was used to show the performance of the predictability of the models. The RMSE, MAE and MBE were employed to check the anomalies between the predicted and the observed values. The results showed that, average values of the C.C ranged from 0.9294 - 0.9852. The average values of the RMSE were 4.0033, −17.489, 11.2400 and 49.8448; MAE were 3.1341, 15.9802, 10.6525, and 61.4736; and MBE were 0.0786, 9.5755, 0.0007 and 47.0204 for Philip, Horton, Green Ampt and Kostiakov respectively for the wetland soils. Statistical results also from the Fisher’s multiple comparison test show that the mean infiltration rate estimated from the Green Ampt’s, Philip’s and Horton’s model was not significantly different (p > 0.05) from the observed. The results indicated that the Kostiakov’s model had the highest deviations as it overestimated the measured data in all the plots. Comparison of the statistical parameters C.C, RMSE, MAE, and MBE for the four models indicates that the Philip’s model agreed well with the measured data and therefore, performed better than the Green Ampt’s, Horton’s and Kostiakov’s models respectively in that order for Besease wetland soils. Estimation of infiltration rate by the Philip’s model is important in the design of irrigation schemes and scheduling. Therefore, in the absence of measured infiltration data, the Philip’s model could be used to produce infiltration information for inland valley bottom soils that exhibit similar characteristic as Besease wetland soils.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四种入渗模式的比较与估算
入渗是水循环的重要组成部分。它提供了土壤水分在渗透区,以支持植物生长。本研究比较了四种入渗模型与双环式入渗仪测量值的有效性。采用线性回归分析对四种模型的参数进行估计。cc用于显示模型的可预测性的性能。采用RMSE、MAE和MBE对预测值与实测值的异常进行检验。结果表明,C.C的平均值为0.9294 ~ 0.9852。RMSE均值分别为4.0033、- 17.489、11.2400和49.8448;MAE分别为3.1341、15.9802、10.6525、61.4736;Philip、Horton、Green Ampt和Kostiakov湿地土壤的MBE分别为0.0786、9.5755、0.0007和47.0204。Fisher多重比较检验的统计结果也表明,Green Ampt’s、Philip’s和Horton’s模型估计的平均入渗速率与观测值无显著差异(p > 0.05)。结果表明,Kostiakov模型在所有图中都高估了实测数据,偏差最大。四种模型的统计参数C.C、RMSE、MAE和MBE的比较表明,Philip模型与实测数据吻合较好,因此在Besease湿地土壤中分别优于Green Ampt、Horton和Kostiakov模型。利用菲利普模型估算入渗速率对灌溉方案的设计和调度具有重要意义。因此,在没有实测入渗数据的情况下,Philip’s模型可以用于产生与Besease湿地土壤具有相似特征的内陆河谷底部土壤的入渗信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
278
期刊最新文献
How Did Vinh Moc Village, Located near Vietnam DMZ, Protect Their Villagers from United States Air Force Bombardment during the Vietnam War? Contamination and Potential Risks of Heavy Metals in the Sediments of the Chari and Logon Rivers in N’Djamena, Chad Saigon River Valley: A Navigation, Trade, Mitigation, Invasion, Liberation, and Unification Pathway Effectiveness of Combined Biochar and Lignite with Poultry Litter on Soil Carbon Sequestration and Soil Health United States Secret War in Laos: Long-Term Environmental and Human Health Impacts of the Use of Chemical Weapons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1